118. A Remark on the Arithmetic in ^a Subfield.

By Keizo ASANO and Tadasi NAKAYAMA. Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., Dec. 12, 1940.)

Let K be a (commutative) field and k be its subfield over which K has a finite degree. It is well known that if k is a quotient field of a certain integrity-domain in which the usual arithmetic¹⁾ holds then the same is the case in the integrity-domain in K consisting of the totality of relatively integral elements. The present small remark is however concerned with the converse situation. Suppose namely K be a quotient field of an integrally closed integrity-domain \mathfrak{D} . Does then the integrity-domain

 $\mathfrak{v} = \mathfrak{D} \cap k$

in k have the usual arithmetic if we have it in \mathfrak{D} ? The answer is of course negative in general.²⁾ So we want to obtain a condition that the usual arithmetic prevail in o. And, to do so we can, and shall, assume without any essential loss in generality that K/k be normal, since we know that the usual arithmetic is preserved by any finite extension.

Theorem 1. In order that $p = 0 \land k$ possess the usual arithmetic it is Theorem 1. In order that $0 = \mathbb{R} \cap k$ possess the usual arithmetic it is
necessary and sufficient that the intersection $\mathbb{D}^* = \mathbb{R} \cap \mathbb{D}' \cap \dots \cap \mathbb{D}^{(n-1)}$
 $(n = (K \cdot k))$ of all the conjugates (with respect to $K|k$) $(n=(K: k))$ of all the conjugates (with respect to K/k) of $\mathfrak D$ in K have it. And, if this is the case then \mathcal{D}^* is the totality of the elements in K relatively integral with respect to $\mathfrak o$.

Theorem 2. If in particular $\mathfrak D$ coincides with all its conjugates and if we have the usual arithmetic in $\mathfrak D$ then we have it in $\mathfrak o$ too.

We begin with a proof of this special case: First, k is the quotient field of o. For, if $a \in k$ then $a \in \mathcal{D}$ for a suitable $a \in \mathcal{D}$ and so $aN(a) \in \mathfrak{o}$, where $N(a)$ is the norm $aa' \cdots a^{(n-1)}$ of a and lies in $\mathfrak{o} = \mathfrak{O} \cap k$ since α , α' , \cdots are all in \mathcal{D} .

Let a be an (integral or fractional) θ -ideal in k. $\alpha \mathfrak{D}$ has the inverse $(a\mathfrak{D})^{-1}$ and $a(a\mathfrak{D})^{-1} = (a\mathfrak{D}) (a\mathfrak{D})^{-1} = \mathfrak{D}$. Hence

$$
1 = a_1a_1 + a_2a_2 + \cdots + a_ra_r \quad \text{with} \quad a_\mu \in \alpha \,, \quad a_\mu \in (\alpha \text{D})^{-1} \,,
$$

and

$$
1 = \prod_{i=0}^{n-1} (a_1 a_1^{(i)} + \cdots + a_r a_r^{(i)}) = \sum c_{\nu_1 \ldots \nu_r} a_1^{\nu_1} \cdots a_r^{\nu_r},
$$

where $c_{\nu_1...\nu_r}$ are homogeneous of degree n in $a_1, ..., a_r, a'_1, ..., a'_r, ...$ Now, let $\mathfrak P$ be a prime ideal in $\mathfrak D$, and let $\mathfrak D_{\mathfrak P}$ be the ring of integers for \mathfrak{B} , that is, the valuation ring for \mathfrak{B} . Then $\mathfrak{o}_\mathfrak{P} = \mathfrak{O}_\mathfrak{P} \cap k$ is the valuation ring of the valuation in k induced by \mathcal{P} . We set $a_{\mathcal{P}} = a \circ_{\mathcal{P}}$,

¹⁾ Unique factorization into prime ideals $=$ Group condition.

²⁾ See an example below.