118. A Remark on the Arithmetic in a Subfield.

By Keizo ASANO and Tadasi NAKAYAMA. Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., Dec. 12, 1940.)

Let K be a (commutative) field and k be its subfield over which K has a finite degree. It is well known that if k is a quotient field of a certain integrity-domain in which the usual arithmetic¹⁾ holds then the same is the case in the integrity-domain in K consisting of the totality of relatively integral elements. The present small remark is however concerned with the converse situation. Suppose namely K be a quotient field of an integrally closed integrity-domain \mathfrak{D} . Does then the integrity-domain

 $\mathfrak{o}=\mathfrak{O}\cap k$

in k have the usual arithmetic if we have it in Ω ? The answer is of course negative in general.²⁾ So we want to obtain a condition that the usual arithmetic prevail in o. And, to do so we can, and shall, assume without any essential loss in generality that K/k be normal, since we know that the usual arithmetic is preserved by any finite extension.

Theorem 1. In order that $o = O \cap k$ possess the usual arithmetic it is necessary and sufficient that the intersection $\mathcal{D}^* = \mathcal{D} \cap \mathcal{D}' \cap \dots \cap \mathcal{D}^{(n-1)}$ (n=(K:k)) of all the conjugates (with respect to K/k) of \mathcal{D} in K have it. And, if this is the case then \mathcal{D}^* is the totality of the elements in K relatively integral with respect to o.

Theorem 2. If in particular \mathfrak{O} coincides with all its conjugates and if we have the usual arithmetic in \mathfrak{O} then we have it in \mathfrak{o} too.

We begin with a proof of this special case: First, k is the quotient field of \mathfrak{o} . For, if $a \in k$ then $aa \in \mathfrak{O}$ for a suitable $a \in \mathfrak{O}$ and so $aN(a) \in \mathfrak{o}$, where N(a) is the norm $aa' \dots a^{(n-1)}$ of a and lies in $\mathfrak{o} = \mathfrak{O} \cap k$ since a, a', \dots are all in \mathfrak{O} .

Let a be an (integral or fractional) o-ideal in k. a \mathfrak{D} has the inverse $(a\mathfrak{Q})^{-1}$ and $a(a\mathfrak{Q})^{-1} = (a\mathfrak{Q})(a\mathfrak{Q})^{-1} = \mathfrak{Q}$. Hence

$$1 = a_1 a_1 + a_2 a_2 + \dots + a_r a_r \quad \text{with} \quad a_\mu \in \mathfrak{a} , \quad a_\mu \in (\mathfrak{a} \mathfrak{O})^{-1} ,$$

and

$$1 = \prod_{i=0}^{n-1} (a_1 a_1^{(i)} + \dots + a_r a_r^{(i)}) = \sum c_{\nu_1 \dots \nu_r} a_1^{\nu_1} \dots a_r^{\nu_r},$$

where $c_{\nu_1...\nu_r}$ are homogeneous of degree *n* in $a_1, ..., a_r, a'_1, ..., a'_r, ...$ Now, let \mathfrak{P} be a prime ideal in \mathfrak{D} , and let $\mathfrak{D}_{\mathfrak{P}}$ be the ring of integers for \mathfrak{P} , that is, the valuation ring for \mathfrak{P} . Then $\mathfrak{o}_{\mathfrak{P}} = \mathfrak{D}_{\mathfrak{P}} \frown k$ is the valuation ring of the valuation in k induced by \mathfrak{P} . We set $\mathfrak{a}_{\mathfrak{P}} = \mathfrak{a}\mathfrak{o}_{\mathfrak{P}}$,

¹⁾ Unique factorization into prime ideals = Group condition.

²⁾ See an example below.