PAPERS COMMUNICATED

13. On Regularly Convex Sets.

By Kôsaku YOSIDA and Masanori FUKAMIYA. Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., March 12, 1941.)

§ 1. Introduction. We denote by E a Banach space and by E its conjugate space. A set $X \subseteq E$ is called *convex* if $x, y \in E$ implies $ax+(1-a)y \in E$ for all $a (1 \ge a \ge 0)$. According to M. Krein and V. Smulian¹, a set $F \subseteq \overline{E}$ is called *regularly convex* if for every $g \in F$ $(g \in \overline{E})$ there exists $x_0 \in E$ such that $\sup_{f \in \overline{F}} f(x_0) < g(x_0)$. It is easy to see that only convex sets in \overline{E} may be regularly convex. Moreover we may prove

Theorem 1. A convex set $F \leq \overline{E}$ is regularly convex if and only if F is closed in the weak topology of \overline{E} as functionals.

Hereby, for any $f_0 \in \overline{E}$, its weak neighbourhood $U(f_0, x_1, x_2, ..., x_n, \varepsilon)$ is defined as the totality of $f \in \overline{E}$ such that $\sup_{1 \le i \le n} |f(x_i) - f_0(x_i)| < \varepsilon$, where $\{x_i\}_{i=1,2,...,n}$ is an arbitrary system of points εE and ε is an arbitrary positive number².

The purpose of the present note is to show that there exists a kind of duality between (strongly) closed convex sets $\leq E$ and regularly convex sets $\leq \overline{E}$. By this duality we may give, to almost all the theorems in Chapter 1 of [K-S], geometrical interpretations and new proofs. We then give a proof to Krein-Milman's³⁾

Theorem 2. If a (strongly) bounded set $F \leq \overline{E}$ is regularly convex, then F has extreme points f_0 , viz. points f_0 such that $f_0 \neq \frac{1}{2}(g+h)$ for any two $g, h \in F, g \neq f_0, h \neq f_0$.

If E is separable, the above duality shows that Theorem 2 is an immediate corollary of a theorem due to S. Mazur⁴). The proof for non-separable E is also given by transinite induction. This was obtained by one of us (Fukamiya): Zenkoku Shijyô-Sugaku Danwakai, 207 (Japanese). After the present note is completed, we received a letter from S. Kakutani, now in Princeton, and we knew that F. Bohnenblust

4) Stud. Math., 4 (1933), 70-84.

¹⁾ Ann. of Math., **41** (1940), 556-583, to be referred as [K-S].

²⁾ The importance of weak topologies in the theory of Banach spaces was especially stressed on by S. Kakutani with much success: Proc. **15** (1939), 169–173 and **16** (1940), 63–67. We omit the easy proof of Theorem 1, since it is similar to his proof of the equivalence between the transfinite closure and the regular closure of linear subspaces $\leq \overline{E}$. The equivalence of the two notions: transfinitely closed convex sets $\leq \overline{E}$ and regularly convex sets $\leq \overline{E}$, was proved in [K-S], 569.

³⁾ The vol. 9 of the Stud. Math. is not yet arrived at our institute. We knew their result from M. and S. Krein's paper: C. R. URSS, 27, 5 (1940), 427-430.