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1. Introduction and the theorems. The purpose of the present
note is to give a new proof to Kakutani-Krein’s lattice-theoretic charac-
terisation of the space of continuous functions on a bicompact space).
We first represent algebraically the vector lattice as point functions
and then introduce the topology to the represented function lattice,
while Kakutani-Krein’s (independent and different) proofs both make
use of the assumed norm and hence the conjugate space of the vector
lattice. Our treatment may be compared with Birkhoff-Stone-Wallman’s
representation of Boolean algebra as field of sets or with Gelfand’s)

representation of normed ring as function ring).
A vector lattice E is a partially ordered real linear space, some of

whose elements f are "non-negative" (written f:> 0) and in which
(V1)" Iff0 and a0, then afrO.
(V2)" Iff0 and -f0, then f=0.
(V3)" Iff0 and g0, thenf/g0.
(V 4)" E is a lattice by the semi-order relation f g.

In this note we further assume the Archimedean axiom
(V 5)" If f> 0 and a 0, then af 0 (in order-topology),

and the existence of a unit I 0 satisfying
(V 6)" For any fe E there exists a :> 0 such that -aIfaL
A linear subspace N of E is called an ideal) if N contains with

f all x satisfying xllfl. Here we put, as usual, Ifl=f+-f-,
f/ --f /0--sup (f, 0), f-=f/ 0=inf (f, 0). An ideal N E is called
maximal if it is contained in no other ideal 4 E. Denote by Yt the
set of all the maximal ideals N of E. It is proved below that the re-
sidual class E/N of E mod any maximal ideal N is linear-lattice-iso-
morphic to the vector lattice of real numbers, the non-negative ele-
ments e E and I respectively being represented by non-negative num-
bers and the number 1. We denote by f(N) the real number which
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