On the Behaviour of a Meromorphic Function *66*. in the Neighbourhood of a Transcendental Singularity.

By Yukinari Tôki.

Mathematical Institute, Osaka Imperial University. (Comm. by S. KAKEYA, M.I.A., Oct. 11, 1941.)

In this paper we shall prove the theorems of Beurling-Kunugui¹⁾, Kunugui², and Iversen-Gross³ using L. Ahlfors' principal theorem on covering surfaces⁴⁾.

Suppose that f(z) is uniform, meromorphic in a connected domain D. Let z_0 be a point on the boundary Γ of D. We associate with z_0 three sets of values:

(1) The cluster set $S_{z_0}^{(D)}$. This is the set of all values a such that $\lim f(z_{\nu}) = \alpha$ where z_{ν} ($\nu = 1, 2, ...$) is a sequence of points tending to z_0 within D. It is obvious that $S_{z_0}^{(D)}$ is a closed set.

(2) The cluster set $S_{z_0}^{(\Gamma)}$. This is the product $\prod_{n=1}^{\infty} M_n$, where M_n denotes the closure of the sum $\sum_{0 < |z'-z_0| < \frac{1}{n}} S_{z'}^{(D)}$, z' belonging to Γ . This

set is also a closed set and $S_{z_0}^{(D)}$ includes $S_{z_0}^{(\Gamma)}$. (3) The range of values $R_{z_0}^{(D)}$. A value α belongs to $R_{z_0}^{(D)}$ if, and only if, f(z) takes the value α an infinity of times near z_0 inside D. It is obvious that $S_{z_0}^{(D)}$ includes $R_{z_0}^{(D)}$.

Suppose that $d(S_1, S_2)$ denotes the distance between a set S_1 and a set S_2 , CS the complement of a set S with respect to the w-plane, S the closure of S, B(S) the boundary of S, and K(r) and k(r) denote the circular disc $|z-z_0| < r$ and circumference $|z-z_0| = r$ respectively.

Lemma 1⁵⁾. Let w=f(z) be uniform and meromorphic in a domain D, and z_0 be a point on the boundary Γ of D. Suppose that a is a value belonging to $S_{z_0}^{(D)} - S_{z_0}^{(\Gamma)}$ but not belonging to $R_{z_0}^{(D)}$. Then a is an asymptotic value of f(z) at z_0 and the length of the image of its asymptotic path by w=f(z) on the Riemann sphere is finite.

Proof. We may assume that α is finite by rotating the Riemann sphere, if necessary. Since $a \bar{\epsilon} S_{z_0}^{(\Gamma)}$, $a \bar{\epsilon} R_{z_0}^{(D)}$, there exists a positive number r such that $a \bar{\epsilon} \sum_{0 < |z'-z_0| \le r} S_{z'}^{(D)}$ where z' varies on Γ , and $f(z) \neq a$ for $|z-z_0| \leq r$ within D. Consequently there exist positive numbers

¹⁾ K. Kunugui: Sur un théorème de MM. Seidel-Beurling, Proc. 15 (1939), 27-32.

²⁾ K. Kunugui: Sur un problème de M. A. Beurling, Proc. 16 (1940), 361-366.

³⁾ K. Noshiro: On the theory of the cluster sets of analytic functions, Journ. Fac. Sc. Hokkaido Imp. University. Ser. I, vol. 6 (1938), pp. 230-231.

⁴⁾ L. Ahlfors: Zur Theorie der Überlagerungsflächen, Acta Math., Bd. 65 (1935), or R. Nevanlinna: Eindeutige analytischen Funktionen, (1936), pp. 312-345.

⁵⁾ Noshiro: loc. cit. theorem 1. p. 221. He proved that α is an asymtotic value of f(z) at z_0 under the same hypothesis.