# 104. Analytical Characterization of Displacements in General Poincaré Space. 

By Kiiti Morita.<br>Tokyo Bunrika Daigaku, Tokyo.<br>(Comm. by T. Takagi m.I.A., Dec. 12, 1941.)

In recent papers M. Sugawara has constructed a theory of automorphic functions of higher dimensions, as a generalization of Poincaré's theory ${ }^{1)}$. He has considered the space $\mathfrak{A}_{(n)}$, whose points are symmetric matrices of order $n$ with the property $E^{(n)}-\bar{Z}^{\prime} Z>0$, and defined the displacements in $\mathfrak{H}_{(n)}$ as follows: Let $U=\binom{U_{1} U_{2}}{U_{3} U_{4}}$ be a matrix of order $2 n$ satisfying the conditions $U^{\prime} J U=J, \quad U^{\prime} S \bar{U}=S$, where $J=$ $\left(\begin{array}{cc}0 & E^{(n)} \\ -E^{(n)} & 0\end{array}\right), \quad S=\left(\begin{array}{cc}E^{(n)} & 0 \\ 0 & -E^{(n)}\end{array}\right)$. Then the transformation $W=$ $\left(U_{1} Z+U_{2}\right)\left(U_{3} Z+U_{4}\right)^{-1}$ is called a displacement in $\mathfrak{A}_{(n)}$. In the classical case $n=1$, as is well known, the transformations of the type described above exhaust all the one-to-one analytic transformations which map $\mathfrak{U}_{(n)}$ into itsfelf. Then arises the problem: Does this fact remain true in our general case? In what follows this problem will be discussed for the spaces $\mathfrak{H}_{(n)}$ and $\mathfrak{H}_{(n, m)}{ }^{2}$. The answer is affirmative except for $\mathfrak{A}_{(n, n)}$. As in the classical case we are led to this result by an analogue to Schwarz's lemma in higher dimensions.

1. The set of all matrices of type $(n, m)$ shall be denoted by $\mathfrak{R}_{(n, m)}$.

Theorem 1. If a mapping $f$ of $\Re_{(n, m)}$ into itself satisfies the conditions: (1) $f(\alpha A+\beta B)=\alpha f(A)+\beta f(B),(\alpha, \beta$ being complex numbers) (2) according as the rank of $Z$ is 1 or 2 , the rank of the image $f(Z)$ is 1 or $\geqq 2$, then the mapping $f$ can be written in the following form: $f(Z)=A Z B$, when $n \neq m ; f(Z)=A Z B$ or $A Z^{\prime} B$, when $n=m$. Here $A$ and $B$ are non-singular constant matrices of orders $n$ and $m$ respectively.

Proof. We shall denote the matrix units by $E_{\alpha \beta}$ : the $(\alpha, \beta)$-element of $E_{\alpha \beta}$ is equal to 1 and the other elements are all zeroes. For brevity let us call that a matrix $A$ has the form ( $a$ ) or ( $b$ ), according as $A$ can be written in the form $A=\sum_{a=1}^{n} a_{a 1} E_{a 1}$ or $A=\sum_{\beta=1}^{m} a_{1 \beta} E_{1 \beta}$, where $a_{a 1}, a_{1 \beta}$ are numbers. Now, by the condition (2), there exist non-singular matrices $A_{1}$ and $B_{1}$ (of orders $n$ and $m$ ) such that $A_{1} f\left(E_{11}\right) B_{1}=E_{11}$. Then $A_{1} f\left(E_{i 1}\right) B_{1}(i>1)$ has the form (a) or (b). For, if we put $A_{1} f\left(E_{i 1}\right) B_{1}=$ $\sum_{\alpha, \beta} c_{\alpha \beta} E_{\alpha \beta}$ for a fixed $i$, we have, by the condition (2), $c_{11} c_{\alpha \beta}-c_{\alpha 1} c_{1 \beta}=0$

[^0]
[^0]:    1) M. Sugawara, Über eine allgemeine Theorie der Fuchsschen Gruppen und Theta-Reihen, Ann. Math., 41 (1940), 488-494. On the general zetafuchsian functions, Proc. 16 (1940), 367-372. A generalization of Poincaré-space, Proc. 16 (1940), 373-377, to be cited as [S-3].
    2) K. Morita, A remark on the theory of general fuchsian groups, Proc. 17 (1941), 233-237, to be cited as [ $M-1$ ].
