No. 10.]

104. Analytical Characterization of Displacements in General Poincaré Space.

By Kiiti Morita.

Tokyo Bunrika Daigaku, Tokyo. (Comm. by T. Takagi M.I.A., Dec. 12, 1941.)

In recent papers M. Sugawara has constructed a theory of automorphic functions of higher dimensions, as a generalization of Poincaré's theory¹⁾. He has considered the space $\mathfrak{A}_{(n)}$, whose points are symmetric matrices of order n with the property $E^{(n)} - \overline{Z}'Z > 0$, and defined the displacements in $\mathfrak{A}_{\scriptscriptstyle(n)}$ as follows: Let $U = \begin{pmatrix} U_1 U_2 \\ U_3 U_4 \end{pmatrix}$ be a matrix of order 2n satisfying the conditions U'JU=J, $U'S\bar{U}=S$, where J= $\begin{pmatrix} 0 & E^{(n)} \\ -E^{(n)} & 0 \end{pmatrix}, \quad S = \begin{pmatrix} E^{(n)} & 0 \\ 0 & -E^{(n)} \end{pmatrix}.$ Then the transformation $(U_1Z+U_2)(U_3Z+U_4)^{-1}$ is called a displacement in $\mathfrak{A}_{(n)}$. In the classical case n=1, as is well known, the transformations of the type described above exhaust all the one-to-one analytic transformations which map $\mathfrak{A}_{(n)}$ into itsfelf. Then arises the problem: Does this fact remain true in our general case? In what follows this problem will be discussed for the spaces $\mathfrak{A}_{(n)}$ and $\mathfrak{A}_{(n,m)}^{(n)}$. The answer is affirmative except for $\mathfrak{A}_{(n,n)}$. As in the classical case we are led to this result by an analogue to Schwarz's lemma in higher dimensions.

1. The set of all matrices of type (n, m) shall be denoted by $\Re_{(n, m)}$.

Theorem 1. If a mapping f of $\Re_{(n,m)}$ into itself satisfies the conditions: (1) $f(aA+\beta B)=af(A)+\beta f(B)$, (a,β) being complex numbers) (2) according as the rank of Z is 1 or 2, the rank of the image f(Z) is 1 or ≥ 2 , then the mapping f can be written in the following form: f(Z)=AZB, when $n \neq m$; f(Z)=AZB or AZ'B, when n=m. Here A and B are non-singular constant matrices of orders n and m respectively.

Proof. We shall denote the matrix units by $E_{a\beta}$: the (a,β) -element of $E_{a\beta}$ is equal to 1 and the other elements are all zeroes. For brevity let us call that a matrix A has the form (a) or (b), according as A can be written in the form $A = \sum_{a=1}^{n} a_{a1}E_{a1}$ or $A = \sum_{\beta=1}^{m} a_{1\beta}E_{1\beta}$, where a_{a1} , $a_{1\beta}$ are numbers. Now, by the condition (2), there exist non-singular matrices A_1 and B_1 (of orders n and m) such that $A_1f(E_{11})B_1=E_{11}$. Then $A_1f(E_{i1})B_1(i>1)$ has the form (a) or (b). For, if we put $A_1f(E_{i1})B_1=0$ $\sum_{a,\beta} c_{a\beta}E_{a\beta}$ for a fixed i, we have, by the condition (2), $c_{11}c_{a\beta}-c_{a1}c_{1\beta}=0$

¹⁾ M. Sugawara, Über eine allgemeine Theorie der Fuchsschen Gruppen und Theta-Reihen, Ann. Math., **41** (1940), 488-494. On the general zetafuchsian functions, Proc. **16** (1940), 367-372. A generalization of Poincaré-space, Proc. **16** (1940), 373-377, to be cited as [S-3].

²⁾ K. Morita, A remark on the theory of general fuchsian groups, Proc. 17 (1941), 233-237, to be cited as [M-1].