102. On Vector Lattice with a Unit, II.

By Kôsaku Yosida and Masanori Fukamiya.

Mathematical Institute, Osaka Imperial University. (Comm. by T. Takagi, m.I.A., Dec. 12, 1941.)
§ 1. Introduction and the theorems. In a preceding note ${ }^{1)}$ one of the authors gave a representation of the vector lattice with a unit to obtain an algebraic proof of Kakutani-Krein's lattice-theoretic characterisation ${ }^{2)}$ of the space of continuous functions on a bicompact Hausdorff space. The purpose of the present note is to extend the result and to show that there exists a close analogy between the structures of the vector lattice and the algebras as in the case of the normed ring and the algebras ${ }^{3}$.

A vector lattice E is a partially ordered real linear space, some of whose elements f are " non-negative" (written $f \geqq 0$) and in which"
(V 1): If $f \geqq 0$ and $\alpha \geqq 0$, then $\alpha f \geqq 0$.
(V 2) : If $f \geqq 0$ and $-f \geqq 0$, then $f=0$.
(V 3) : If $f \geqq 0$ and $g \geqq 0$, then $f+g \geqq 0$.
(V 4): E is a lattice by the semi-order relation $f \geqq g(f-g \geq 0)$.
In this note we further assume the existence of a "unit" $I>0$ satisfying
(V5): For any $f \in E$ there exists $\alpha>0$ such that $-\alpha I \leqq f \leqq \alpha I$.
An element $f \in E$ is called " nilpotent" if $n|f|<I(n=1,2, \ldots)$. The set R of all the nilpotent elements f is called the " radical" of E. Surely R constitutes a linear subspace of E. Moreover it is easy to see that R is an "ideal" of E, viz. $f \in R$ and $|g| \leqq|f|$ imply $g \in R$. Here we put as usual $|f|=f^{+}-f^{-}, f^{+}=f \bigvee 0=\sup (f, 0), f^{-}=f \backslash 0=\inf (f, 0)$.

Let N be a linear subspace of E. Then the linear congruence $a \equiv b(\bmod . N)$ is also a lattice-congruence :

$$
a \equiv b, a^{\prime} \equiv b^{\prime} \quad(\bmod . N) \text { implies } a b \equiv a^{\prime} b^{\prime} \quad(\bmod . N),
$$

if and only if N is an ideal of $E^{5)}$. An ideal N is called " non-trivial" if $N \neq 0, E$. A non-trivial ideal N is called " maximal" if it is contained in no other ideal $\neq E$. Denote by \mathfrak{R} the set of all the maximal ideals N of E. The residual class E / N of E mod. any ideal $N \in \mathfrak{R}$ is "simple", viz. E / N does not contain non-trivial ideals. It is proved

[^0]5) Garrett Birkhoff : Lattice Theory, New York (1940), 109.

[^0]: 1) K. Yosida: Proc. 17 (1941), 121-124. Cf. also M. H. Stone: Proc. Nat. Acad. Sci. 27 (1941), 83-87, and H. Nakano: Proc. 17 (1941), 311-317.
 2) S. Kakatani : Proc. 16 (1940), 63-67. M. and S. Krein : C. R. URSS, 27 (1940), 427-430.
 3) I. Gelfand: Rec. Math. 9 (1941), 1-24. We here express our hearty thanks to Tadasi Nakayama for his discussions during the preparation of the present note. He also obtained another proof of the theorem 1 below by considering the embedding of "lattice-groups" in a direct product of linearly ordered lattice-groups. See his paper shortly to appear in these Proceedings.
 4) Small roman letters and small greek letters respectively denote elements $\in E$ and real numbers. We write $f>0$ if $f \geqq 0$ and $f \neq 0$.
