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(Comm. by T. TAKAOI, t.I.A., Jan. 12, 1942.)

By a lattice-ordered group, or briefly a lattice-group, we mean a
(not necessarily abelian) group which is at the same time a lattice such
that the order relation is preserved under left and right multiplica-
tion; a b implies ac bc and ca <:__ cb we have ac bc= (a’ b)c,
ca cb c(a b) too.

Abelian lattice-groups, particularly so-called vector lattices, have
been studied by many authors. The present short note is to give
some simple remarks concerning mainly with non-abelian lattice-groups.
We shall begin with elementary observations about homomorphisms.
We shall then show that Lorenzen’s main theorem for abelian lattice-
groups can be transfered to the non-abelian case with minor modifica-
tions. However, this does not give, contrary to Clifford’s abelian case,
a representation of the lattice-group by linearly ordered ones" it gives
merely a representation of the lattice-group by linearly ordered systems
of cosets with respect to its subgroups. It follows readily that every
lattice-group is, considered as a lattice, distributive. This fact, how-
ever, can easily be seen also by modifying somewhat the well-known
proofs to the distributivity of abelian lattice-groups>. The structure
of lattice-groups satisfying the conditional (=weak)maximum condition
is very simple and rather triviaI; they are necessarily abelian6. We
shall also observe that a recent result by Yosida-Fukamiyd concerning
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