30. On some Property of Regular Functions in $|z|<1$.

By Tatsujiro Shimizu.
Mathematical Institute, Osaka Imperial University. (Comm. by T. Yosie, M.I.A., March 12, 1942.)

§ 1. We shall introduce some of the directional maximum modulus of a regular function in the circle $|z|<1$, and give some theorem on it.

Let $f(z)$ be a regular function in $|z|<1$ and $M_{\theta}(r, \varepsilon)=$ $\underset{|z|=r, \theta-\varepsilon<\operatorname{Arg} z<\theta+\varepsilon}{\text { l. u. b. }}|f(z)|, \varepsilon$ being a positive number, and

$$
\begin{aligned}
& \varlimsup_{r \rightarrow 1} \frac{M_{\theta}(r, \varepsilon)}{\varphi(r)}=\bar{M}_{\theta}(1, \varepsilon)_{\varphi} \\
& \varlimsup_{r \rightarrow 1} \frac{M_{\theta}(r, \varepsilon)}{\varphi(r)}=\underline{M}_{\theta}(1, \varepsilon)_{\varphi}
\end{aligned}
$$

where $\varphi(r)$ is a monotonously increasing function for $r \rightarrow 1$.

$$
\begin{array}{ll}
\text { Now } \quad & \text { g. }_{0<\varepsilon<\delta} \operatorname{l.~}^{\text {b. }} \bar{M}_{\theta}(1, \varepsilon)_{\varphi}=\bar{M}_{\theta}(1)_{\varphi}{ }^{1)} \\
& \text { l. u. b. } \\
0<\varepsilon<\delta \\
M_{\theta}(1, \varepsilon)_{\varphi}=\underline{M}_{\theta}(1)_{\varphi}
\end{array}
$$

These measures are of some use for a regular function in $|z|<1$. In the following we shall consider the case $\varphi(r) \equiv 1$ and denote by $\bar{M}_{\theta}(1)$ and $\underline{M}_{\theta}(1)$ respectively.
§2. Let E_{θ} be a set of θ, which is everywhere dense in $(0,2 \pi)$ and if $f(z)$ converges (to limits, ∞ included) for all θ, belonging to E_{θ} when $z=r e^{i \theta} \rightarrow 1, \theta$ being fixed, then we shall call $f(z)$ has F-property.

Let E_{θ} be a set of θ, which is everywhere dense in $(0,2 \pi)$ and if $\bar{M}_{\theta}(1)=\infty$ for all θ, belonging to E_{θ}, then we shall call $f(z)$ has M property.
Theorem: Let $f(z)$ be regular in $|z|<1$ and have F - and M-properties, then the Riemann surface of the inverse function of $f(z)$ has no parts of boundary in the finite plane ${ }^{2}$.

By to have parts of boundary ${ }^{3}$, having α, β as the end-points, in the finite plane, we shall mean the following:

[^0]
[^0]: 1) 2. u. b. $=$ least upper bound.
 g. l. b . = greatest lower bound.
 1) A sort of modular functions has F - and M-properties. M-property is equivalent to the unboundness of $|f(z)|$ in any sector.
 2) The boundary of the domain within the angle $<\alpha p \beta$ may be a line of singularity or a set of limit points of branch points. We suppose here α and β both lie in the finite plane.
