30. On some Property of Regular Functions in |z| < 1.

By Tatsujiro SHIMIZU.

Mathematical Institute, Osaka Imperial University.

(Comm. by T. YOSIE, M.I.A., March 12, 1942.)

§ 1. We shall introduce some of the directional maximum modulus of a regular function in the circle |z| < 1, and give some theorem on it.

Let f(z) be a regular function in |z| < 1 and $M_{\theta}(r, \epsilon) = 1$. 1. u. b. $|f(z)|, \epsilon$ being a positive number, and

$$\begin{split} \overline{\lim_{r \to 1}} & \frac{M_{\theta}(r, \varepsilon)}{\varphi(r)} = \overline{M}_{\theta}(1, \varepsilon)_{\varphi} \\ \lim_{r \to 1} & \frac{M_{\theta}(r, \varepsilon)}{\varphi(r)} = \underline{M}_{\theta}(1, \varepsilon)_{\varphi} \end{split}$$

where $\varphi(r)$ is a monotonously increasing function for $r \rightarrow 1$.

Now

l. u. b.
$$\underline{M}_{\theta}(1, \epsilon)_{\varphi} = \underline{M}_{\theta}(1)_{\varphi}$$
.

g. l. b. $\overline{M}_{\theta}(1, \varepsilon)_{\varphi} = \overline{M}_{\theta}(1)_{\varphi}^{1}$

These measures are of some use for a regular function in |z| < 1. In the following we shall consider the case $\varphi(r) \equiv 1$ and denote by $\overline{M}_{\theta}(1)$ and $M_{\theta}(1)$ respectively.

§ 2. Let E_{θ} be a set of θ , which is everywhere dense in $(0, 2\pi)$ and if f(z) converges (to limits, ∞ included) for all θ , belonging to E_{θ} when $z = re^{i\theta} \rightarrow 1$, θ being fixed, then we shall call f(z) has F-property.

Let E_{θ} be a set of θ , which is everywhere dense in $(0, 2\pi)$ and if $\overline{M}_{\theta}(1) = \infty$ for all θ , belonging to E_{θ} , then we shall call f(z) has *M*-property.

Theorem: Let f(z) be regular in |z| < 1 and have F- and M-properties, then the Riemann surface of the inverse function of f(z) has no parts of boundary in the finite plane².

By to have parts of boundary³⁾, having α , β as the end-points, in the finite plane, we shall mean the following:

¹⁾ l. u. b.=least upper bound.

g. l. b.=greatest lower bound.

²⁾ A sort of modular functions has F- and M-properties. M-property is equivalent to the unboundness of |f(z)| in any sector.

³⁾ The boundary of the domain within the angle $\langle ap\beta \rangle$ may be a line of singularity or a set of limit points of branch points. We suppose here α and β both lie in the finite plane.