29. On the Behaviour of an Inverse Function of a Meromorphic Function at its Transcendental Singular Point, III.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo Imperial University. (Comm. by T. YOSIE, M.I.A., March 12, 1942.)

1. Nevanlinna's fundamental theorems.

Let w = w(z) = f(z) be a meromorphic function for $|z| < \infty$ and $z = \varphi(w)$ be its inverse function. Let K be the Riemann sphere of diameter 1, which touches the w-plane at w=0 and $[a, b] = \frac{|a-b|}{\sqrt{(1+|a|^2)(1+|b|^2)}}$. A δ -neighbourhood U of w_0 is the connected part of the Riemann surface F of $\varphi(w)$, which lies in $[w, w_0] < \delta$ and has w_0 as an inner

surface F of $\varphi(w)$, which lies in $[w, w_0] < \delta$ and has w_0 as an inner point or as a boundary point. Let U correspond to Δ on the z-plane, then $[f(z), w_0] < \delta$ in Δ and $[f(z), w_0] = \delta$ on the boundary of Δ . We assume that Δ extends to infinity. Let z_0 be a point on the z-plane and Δ_r , θ_r be the common part of Δ and $|z-z_0| \leq r$ and $|z-z_0| = r$ respectively. We put $A(r, w; \Delta)$ = the area on K, which is covered by w=f(z), when z varies in Δ_r , $S(r, w; \Delta) = \frac{A(r, w; \Delta)}{\pi \delta^2}$, where $\pi \delta^2$ is the area of $[w, w_0] \leq \delta$ on K, $n(r, a, w; \Delta)$ = the number of zero points of f(z)-a in Δ_r , where $[a, w_0] < \delta$.

$$N(r, a, w; \Delta) = \int_{r_0}^r \frac{n(r, a, w; \Delta)}{r} dr,$$
$$m(r, a, w; \Delta) = \frac{1}{2\pi} \int_{\theta_r} \log \frac{1}{[w(re^{i\varphi}), a]} d\varphi,$$
$$T(r, a, w; \Delta) = N(r, a, w; \Delta) + m(r, a, w; \Delta),$$

L(r) = the total length of the curve on K, which corresponds to θ_r . Then we have the following theorem¹, which corresponds to Nevanlinna's first fundamental theorem.

Theorem I.
$$T(r, a, w; \Delta) = T(r, w; \Delta) + O\left(\int_{r_0}^r \frac{L(r)}{r} dr\right),$$

where $T(r, w; \Delta) = \int_{r_0}^r \frac{S(r, w; \Delta)}{r} dr.$

where

We will call $T(r, w; \Delta)$ the characteristic function of f(z) in Δ and

¹⁾ C. f. K. Kunugui: Une généralisation des théorèmes de MM. Picard-Nevanlinna sur les fonctions méromorphes. Proc. **17** (1941), 283-289.

Y. Tumura: Sur le problème de M. Kunugui. Proc. 17 (1941), 289-295.

Mr. Tumura obtained the same result as Theorem 1, but he informed me that he found a mistake in his proof and will publish a revised proof in this proceedings.