87. On the Function whose Imaginary Part on the Unit Circle Changes its Sign only Twice.

By Sôichi Kakeya, M.I.A.
Mathematical Institute, Faculty of Science, Tokyo Imperial University. (Comm. Oct. 12, 1942.)

I. We are going to consider the function

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} c_{n} z^{n}=c_{1} z+c_{2} z^{2}+\cdots \tag{1}
\end{equation*}
$$

which is regular within the unit circle and is continuous, for simplicity, to the boundary. Putting

$$
\begin{equation*}
z=r e^{i \theta}, \quad f(z)=u(r, \theta)+i v(r, \theta) \tag{2}
\end{equation*}
$$

we confine ourselves to the function which satisfies one of the following two conditions:
or

$$
\left.\left.\begin{array}{rl}
v(1, \theta)=v(\theta) & \geqq 0
\end{array} \text { for } \sigma_{1} \leqq \theta \leqq \sigma_{2} \quad \text { and } \sigma_{2} \leqq \theta \leqq 2 \pi\right\} \text { for } 0 \leqq \theta \leqq \sigma_{1} \text { and } \begin{array}{rl}
\\
& \leqq 0 \tag{4}\\
v(\theta) \leqq 0 & \text { for } \\
\sigma_{1} \leqq \theta \leqq \sigma_{2} & \\
& \geqq 0 \text { for } 0 \leqq \theta \leqq \sigma_{1} \quad \text { and } \sigma_{2} \leqq \theta \leqq 2 \pi
\end{array}\right\}
$$

namely the imaginary part of $f(z)$ on the unit circle $|z|=1$ may change its sign only at two points $e^{i \sigma_{1}}$ and $e^{i \sigma_{2}}$. ($0 \leqq \sigma_{1}<\sigma_{2} \leqq 2 \pi$).

It is easily to be seen that the function

$$
\begin{equation*}
g(z)=e^{-i \frac{\sigma_{1}+\sigma_{2}}{2}} \times \frac{\left(e^{i \sigma_{1}}-z\right)\left(e^{i \sigma_{2}}-z\right)}{z} \tag{5}
\end{equation*}
$$

becomes positive on the unit circle for $\sigma_{1}<\theta<\sigma_{2}$ and negative for the remaining arc. Hence the function

$$
\begin{align*}
F(z)=\varepsilon f(z) g(z) & =\sum_{n=0}^{\infty} C_{n} z^{n}=C_{0}+C_{1} z+C_{2} z^{2}+\cdots \\
& =U(r, \theta)+i V(r, \theta) \tag{6}
\end{align*}
$$

which is evidently continuous in the closed unit circle, must have the property

$$
\begin{equation*}
V(1, \theta)=V(\theta) \geqq 0 \quad \text { for } \quad 0 \leqq \theta \leqq 2 \pi \tag{7}
\end{equation*}
$$

if ε denotes +1 or -1 according as $f(z)$ satisfies the condition (3) or (4).

By the actual multiplication of $F(z)$ and

$$
\begin{equation*}
\frac{1}{g(x)}=e^{i \frac{\sigma_{1}+\sigma_{2}}{2}} \times \frac{z}{\left(e^{i \sigma_{1}}-z\right)\left(e^{i \sigma_{2}}-z\right)}=\frac{1}{2 i \sin \frac{\sigma_{2}-\sigma_{1}}{2}} \sum_{n=1}^{\infty}\left(e^{-i n \sigma_{1}}-e^{-i n \sigma_{2}}\right) z^{n} \tag{8}
\end{equation*}
$$

