107. An Abstract Integral (X).

By Shin-ichi Izumı.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.I.A., Nov. 12, 1942.)

Introduction. The first section is devoted to simplify the theory of general Denjoy integral. The essential point is to use Romanowski's lemma ${ }^{1)}$. He used the lemma to develop the theory of the special Denjoy integral in abstract space. In $\S 2$ we define an "abstract Denjoy integral" The integral which is called \mathfrak{D}-integral, becomes general or special Denjoy integral and others by the suitable specialization. The (\mathfrak{D})-integral is defined as the inverse of an "abstract derivative " $\mathfrak{H D}$ which is defined axiomatically. Finally, we remark that the theory developed here can be extended to the case of abstract valued functions defined in an abstract space.
§ 1. Let $f(x)$ be a real valued function in the interval $I_{0}=(a, b)$. If $f(x)$ is a continuous function in I_{0} such that there is a sequence of sets $\left(E_{k}\right)$ such as $I_{0}=\bigvee_{k=1}^{\infty} E_{k}$ and $f(x)$ is absolutely continuous in E_{k} ($k=1,2,3, \ldots$), then $f(x)$ is called to be generalized absolutely continuous in I_{0}, and we write $f_{\varepsilon} C A C_{Y_{0}}$ or simply $f_{\varepsilon} G A C$. Approximate derivative $A D F(x)$ of $f(x)$ is defined in the ordinary manner.

We will begin by two lemmas.
(1.1) Let E be a closed set in I_{0} and $I_{0}=\bigvee_{k=1}^{\infty} E_{k}$, then there is a portion P of E such that a suitable E_{k} is dense in P.

Proof. If the theorem is not true, then there is a portion P_{1} of E such that $P_{1} \cap E_{1}=\theta$. There is also a portion P_{2} of P_{1} such that $P_{2} \cap E_{2}=\theta$. Thus proceeding we get a sequence (P_{k}) of portions such that $P_{k} \geqq P_{k+1}(k=1,2,3, \ldots)$. Evidently $\bigwedge_{k=1}^{\infty} P_{k} \neq \theta$. If $x \varepsilon \bigwedge_{k=1}^{\infty} P_{k}$, then $x \in E$. On the other hand $x_{\bar{\varepsilon}} E_{k}(k=1,2,3, \ldots)$, and then $x \bar{e} I_{0}$ which is. a contradiction.
(1.2) (Romanowski) Let \mathfrak{F} be a system of open intervals in I_{0}, such that ${ }^{1)}$

1. $I_{k} \varepsilon \mathfrak{F}(k=1,2, \ldots, n)$ and $\left(\bigvee_{k=1}^{\infty} \bar{I}_{k}\right)^{0}=I$ imply $I \varepsilon \Im$.
2°. $I \varepsilon \Im$ and $\Im^{\prime} \leqq I$ imply $I^{\prime} \varepsilon \Im$.
3^{\cup}. if $\bar{I}^{\prime} \leqq I$ implies $I^{\prime} \varepsilon \Im$, then $I \varepsilon \Im$.
4°. if I_{1} is a subsystem of \mathfrak{J} such that \Im_{1} does not cover I_{0}, then there is an $I \varepsilon \mathfrak{J}$ such that \mathfrak{F}_{1} does not cover I.

Then $I_{0} \varepsilon \Im$.
Proof. 4° implies $V(I ; I \varepsilon \mathcal{J}) \geqq I_{0}$. Let $\bar{I} \subset I_{0}$. By the HeineBorel theorem there are $I_{k}(k=1,2, \ldots, n)$ in \mathfrak{J} such as $I \subset \bigvee_{k=1}^{n} I_{k c}$. End

[^0]
[^0]: 1) Romanowski, Recueil math., 1940.
