106. An Abstract Integral (IX).

By Noboru Matsuyama.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.i.a., Nov. 12, 1942.)
Methods defining integral without use of measure was studied by W. H. Young, P. J. Daniel ${ }^{1)}$, S. Banach ${ }^{2}$, and H. H. Goldsteine ${ }^{3)}$, S. Izumi ${ }^{4}$ extended Banach's method to the case of vector lattice. Many authors defined Lebesgue integral as an extension of Riemann or "abstract" Riemann integral. In this paper, extending Goldsteine's method we give a "Lebesgue integral" as an extension of a certain non-negative functional on a vector lattice.
§ 1. Let Z be a vector lattice, and X a sublattice of Z which has the following properties: for any $z \in \boldsymbol{Z}$ there exists at least one $x \in X$ such as $|z| \leqq x$. Let $f(x)$ be a linear non-negative functional on the domain X.

If we define the functionals

$$
f^{0}(z) \equiv \underset{z \leq x \in X}{\mathrm{gr} . \mathrm{l.b}} f(x), \quad f_{0}(z) \equiv \operatorname{l.m}_{z \geq x \in X} \mathrm{u} . \mathrm{b} f(x)
$$

on Z, then we have
(1.1) $\quad f_{0}(z) \leqq-f^{0}(-z)$.
(1.2) $\quad f_{0}(z) \leqq f^{0}(z)$.
(1.3) $f_{0}\left(z_{1}+z_{2}\right) \geqq f_{0}\left(z_{1}\right)+f_{0}\left(z_{2}\right), \quad f^{0}\left(z_{1}+z_{2}\right) \leqq f^{0}\left(z_{1}\right)+f^{0}\left(z_{2}\right)$.
(1.4) $f_{0}(c z)=c f_{0}(z)$ and $f^{0}(c z)=c f^{0}(z)$, for any real non-negative number c.

$$
\begin{align*}
f_{0}\left(z_{1}\right) & +f_{0}\left(z_{2}\right) \leqq f_{0}\left(z_{1} \wedge z_{2}\right)+f_{0}\left(z_{1} \vee z_{2}\right) \leqq f^{0}\left(z_{1} \wedge z_{2}\right) \tag{1.5}\\
& +f^{0}\left(z_{1} \vee z_{2}\right) \leqq f^{0}\left(z_{1}\right)+f^{0}\left(z_{2}\right)
\end{align*}
$$

$$
\begin{equation*}
f^{0}(|z|)-f_{0}(|z|) \leqq f^{0}(z)-f_{0}(z) \tag{1.6}
\end{equation*}
$$

We shall prove the last two only. If $x_{1} \geqq z_{1}, x_{2} \geqq z_{2}, x_{1} \in X, x_{2} \in X$, then we have $x_{1} \vee x_{2} \geqq z_{1} \vee z_{2}$ and $x_{1} \wedge x_{2} \geqq z_{1} \wedge z_{2}$, and then

$$
\begin{array}{ll}
f^{0}\left(z_{1} \wedge z_{2}\right)+f^{0}\left(z_{1} \vee z_{2}\right) \leqq f\left(x_{1} \wedge x_{2}\right)+f\left(x_{1} \vee x_{2}\right)=f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right), \\
& f^{0}\left(z_{1} \wedge z_{2}\right)+f^{0}\left(z_{1} \vee z_{2}\right) \leqq f^{0}\left(z_{1}\right)+f^{0}\left(z_{2}\right) . \\
\text { Similarly } & f_{0}\left(z_{1} \wedge z_{2}\right)+f_{0}\left(z_{1} \vee z_{2}\right) \geqq f_{0}\left(z_{1}\right)+f_{0}\left(z_{2}\right) .
\end{array}
$$

Hence we have the relation (1.5). In the next place by

$$
|z|=z \vee(-z), \text { and }-|z|=(-z) \wedge z
$$

1) Annals of Mathematics, 19 (1918).
2) S. Saks: The theory of integral.
3) Bull. of the Amer. Math. Soc., 47 (1941).
4) S. Izumi: Isōsūgaku 3-2, (1941).
