PAPERS COMMUNICATED

102. On the Regular Vector Lattice.

By Masae ORIHARA.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Nov. 12, 1942.)

Introduction. L. V. Kantrovitch introduced the notion of regularity¹⁾ in vector lattice and applied it to the space of measurable functions. In \$1 of this paper, we prove that the regularity axiom is decomposed into two simple propositions. In the succeeding articles we prove many theorems in Kantrovitch's paper under weaker assumption.

\$ **1.** Let \$ be a complete vector lattice. Then the regularity axiom due to Kantrovitch reads as follows:

If $E_n < \mathfrak{V}$ for n=1, 2, ... and $\sup E_n$ tends to a limit y, then for each n there exists a finite subset E'_n of E_n such that $\lim E'_n = y$.

For regular vector lattice \mathfrak{L} , two theorems hold as Kantrovitch shows.

I. If $y_i^{(k)} \to y_i$ (o) (as $k \to \infty$) and $y_i \to y$ (o) (as $i \to \infty$) in \mathcal{L} , then there exists an increasing sequence of indices k_1, k_2, \ldots such that $y_i^{(k_i)} \to y$ (o) $(i \to \infty)^{2}$

II. For any set $E < \mathfrak{L}$, there exists an enumerable subset E' of E such that sup $E' = \sup E^{3}$

Conversely, we can prove the following theorem.

Theorem 1.1. I and II imply the regularity axiom.

Proof. By II, for each E_n there exists an enumerable set $E'_n = \{y_{n,k}\}$ k=1,2,..., such that $\sup E_n = \sup (y_{n,k})$ k=1,2,... If we put $y_n^{(k)} = \sup (y_{n,1,...}, y_{n,k})$, then $y_n^{(k)} \uparrow \sup E_n (n \to \infty)$. Therefore, if $\limsup_{n \to \infty} E_n = y_0$, then by I we can find an increasing sequence of indices $\{k_n\}$ such that $\lim_{n \to \infty} y_n^{(k_n)} = y_0$. Hence $\limsup_{n \to \infty} (y_{n,1,...}, y_{n,k_n}) = \limsup_{n \to \infty} E_n$.

From the proof it is easy to see that in **II** we can replace the condition $y_i^{(k)} \to y_i$ (o) (as $k \to \infty$) by $y_n^{(k)} \uparrow y_n$ (o) $(k \to \infty)$.

In the space of measurable functions (S), (o)-convergence is equivalent to almost everywhere convergence⁴⁾. Therefore, **I** is nothing but Fréchet's theorem⁵⁾.

We can easily verify that the space (S) satisfies **II**. But more generally we can prove

Theorem 1.2. II holds in the space of functions with metric function ρ such that 1°. for any $y \ge 0$, $\rho(y)$ is defined and ≥ 0 and $\rho(y) = 0$

¹⁾ L.V. Kantrovitch: Lineare halbgeordnete Räume, Recueil Math., 44 (1937), pp. 121-165.

²⁾ loc. cit., Satz 24.

³⁾ loc. cit., Satz 23, a).

⁴⁾ G. Birkhoff, Lattice theory, Chapter VII.

⁵⁾ M. Fréchet, Rendiconti di Palermo, 22 (1906), p. 15.