122. On some Properties of Hausdorff's Measure and the Concept of Capacity in Generalized Potentials.

By Syunzi KAMETANI.

Tokyo Zvosi Koto Sihan-Gakko, Tokyo. (Comm. by S. KAKEYA, M.I.A., Dec. 12, 1942.)

I. Hausdorff's measure and upper density.

Let \mathcal{Q} be any separable metric space with the distance $\rho(p,q)$ for $p, q \in \mathcal{Q}$.

A sphere in \mathcal{Q} with radius r, of centre a is the set of points p such that $\rho(p, a) < r$.

Given any set E < Q. let $\delta(E)$ be the diameter of E, that is, $\delta(E) = \sup_{p, q \in E} \rho(p, q).$

Now, let h(r) be a positive, continuous, monotone-increasing function defined for r > 0 near the origin such that

$$\lim_{r\to 0} h(r) = 0 \; .$$

Taking any sequence of spheres $\{S_i\}_{i=1,2,...}$ such that

(i)
$$\sum_{i=1}^{\infty} S_i > E$$
, (ii) $\delta(S_i) < \varepsilon$ $(i=1, 2, ...)$,

let us put $m_h(E, \varepsilon) = \inf \sum_{i=1}^{\infty} h[\delta(S_i)]$ for fixed $\varepsilon > 0$, and write $m_h(E) = \lim_{\varepsilon \to 0} m_h(E, \varepsilon)$ which is called *h*-measure of *E*. In this definition, we may assume, without loss of generality, that each S_i has points common with *E*. This measure, introduced first by F. Hausdorff¹⁾ is known to have the property of Carathéodory's outer measure and therefore the measurable class of sets with respect to the *h*-measure contains all the Borel sets.

Moreover, *h*-measure is a regular measure², that is to say, for any set $E \subset \Omega$, there exists a Borel set, $H \in \mathfrak{G}\delta$, such that H > E and $m_k(H) = m_k(E)$.

If Ω is 2-dimensional Euclidean space, $m_h(E)$ for $h(r) = \frac{\pi}{4} r^2$, $h(r) = r^{\alpha}$

 $(\alpha > 0)$ and $h(r) = \left(\log \frac{1}{r}\right)^{-1}$ are Lebesgue's plane measure, α -dimensional measure (if $\alpha = 1$, then called Carathéodory's linear measure or length of E) and logarithmic measure respectively.

Given a set E and a point $p \in \Omega$, we shall define the *upper density* of E at p with respect to the *h*-measure by the following expression:

$$\Delta_h(p, E) = \lim_{\partial(S) \to 0} \frac{m_h(E \cdot S)}{h[\partial(S)]} ,$$

¹⁾ F. Hausdorff. Dimension und äusseres Mass, Math. Annalen., 78 (1919).

²⁾ F. Hausdorff. Loc. cit.