117. Locally Bounded Linear Topological Spaces.

By Tosio Aoki.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Dec. 12, 1942.)

D. H. Hyers^[1] has introduced the notion of absolute value into locally bounded linear topological spaces, and proved that the absolute value is upper semi-continuous, while J. v. Wehausen^[2] showed that a linear topological space is metrizable as an *F*-metric if and only if it satisfies the first countability axiom. Since every locally bounded linear topological space satisfies the first countability axiom, it is metrizable as an *F*-metric. But all *F*-metric spaces are not necessarily locally bounded. Hence the problem arises: what metric spaces are equivalent to locally bounded linear topological spaces?

In this paper we introduce a lower or upper semi-continuous absolute value into locally bounded linear topological space and give a condition that the absolute value is continuous. We define F'-normed spaces and prove that they are equivalent to locally bounded linear topological spaces.

§1. Definitions and lemmas.

Definition 1. A linear space L is called a linear topological space if there exists a family \mathfrak{U} of sets $U \subset L$ satisfying following conditions^[3].

- 1) The intersection of all the sets $\in \mathfrak{U}$ is $\{\theta\}^{(1)}$.
- 2) If $U, V \in \mathfrak{U}$ there exists $W \in \mathfrak{U}$ such that $W \subset U \cap V$.
- 3) If $U \in \mathfrak{U}$ there exists $V \in \mathfrak{U}$ such that $V + V < U^{2}$.
- 4) If $U \in \mathbb{U}$ there exists $V \in \mathbb{U}$ such that $[-1, 1]V \subset U^{(3)}$.
- 5) If $x \in L$, $U \in \mathcal{U}$ there exists real a such that $x \in aU$.

Definition 2. A linear topological space L is called locally bounded if \mathfrak{U} satisfies:

6) There exists a bounded set⁴⁾ V of \mathfrak{U} .

Lemma 1. If we put H = [-1, 1]V, then

- 1) [-1, 1]H = H.
- 2) $0 < \alpha < \beta$ implies $\alpha H < \beta H$.
- 3) H is bounded.
- 4) For every $a, \beta \geq 0$, $a+\beta=1$ there exists a constant $k \geq 1$ independent of a, β such that $aH+\beta H < kH$.
- 5) Let $\mathfrak{U}^* = \{ aH \}$, a > 0. Then \mathfrak{U}^* is equivalent to \mathfrak{U} .

- 2) If S, T < L, S+T is the set of all x+y, where $x \in S$, $y \in T$.
- 3) [-1,1]V is the set of all ax such as $-1 \leq a \leq 1$, $x \in V$.

¹⁾ $\{\theta\}$ is the set consisting of zero element θ only.

⁴⁾ A set S in a linear topological space will be called bounded if for any $U \in \mathfrak{U}$ there is a number a such as S < aU. (v. Neumann) This is the same to say that for and sequence $\{x_n\} < S$ and any real sequence $\{a_n\}$ converging to 0, the sequence $\{a_nx_n\}$ converges to θ . (Banach and Kolmogoroff)