PAPERS COMMUNICATED

116. On Locally Convex Topological Spaces.

By Noboru MATSUYAMA.

Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUJIWARA, M.I.A., Dec. 12, 1942.)

Let L be a vector space and D a directed system. If there exists a real valued function $|x|_d$ on the domain $L \times D$ such that

- (1) $|x|_d \ge 0$; if $|x|_d = 0$ for all $d_{\varepsilon}D$ then $x = \theta$,
- (2) $|\alpha x|_d = |\alpha| \cdot |x|_d$ for any real α ,
- (3) for any given $e \in D$ there exists $d \in D$ such that $|x|_d \to 0$ and $|y|_d \to 0$ imply $|x+y|_e \to 0$,
- (4) d < e implies $|x|_d \leq |x|_e$,

then L is said to be a pseudo-normed linear space. It is proved by D. H. Hyers [1] that the pseudo-normed linear space is a linear topological space, which was defined by A. Kolmogoroff [2] and J. v. Neumann [3]. The triangular inequality

(3') $|x+y|_d \leq |x|_d + |y|_d$

is stronger than (3). If we take therefore the condition (3') instead of (3) in addition of (1), (2), (4), then the space L is said to be a locally convex linear topological space. In this paper we concern the locally convex linear topological space L and its conjugate spaces \overline{L} and $\overline{\overline{L}}$.

§ 1. Space \vec{L} . The family of the sets $u(d, \delta) \equiv (x; |x|_d < \delta)$ ($\delta > 0$) is said to be a fundamental system of the origin θ ; we denote it by $\{u(d, \delta); \delta > 0\}$.

Theorem 1. Referring the fundamental system $\{u(d, \delta); \delta > 0\}, L$ is a locally convex linear topological space.

For a linear functional f(x) on the domain L, if there exist some $d \in D$ and M(d) > 0 such that

(1) $|f(x)| \leq M(d) \cdot |x|_d$ for all $x \in L$,

then f(x) is said to be bounded.

Theorem 2. For linear functionals continuity is equivalent to boundedness.

For the linear continuous functional f(x) the set of all d with condition (1) is denoted by D_f , and for a given $d \in D$ the set of all f(x) with condition (1) is denoted by \overline{L}_d .

Theorem 3. D_f is a cofinal subsystem of D.

Proof. If d' and d'' are two elements of D_f , then $|f(x)| \leq M(d') \cdot |x|_{d'}$, and $|f(x)| \leq M(d') \cdot |x|_{d''}$ for all $x \in L$. Since D is a directed system, there exists a d such that d' < d and d'' < d. Consequently $|f(x)| \leq M(d') \cdot |x|_d$ and $|f(x)| \leq M(d') |x|_d$ for all $x \in L$. That is $d \in D_f$. For any d in D there exists d'' such as d'' > d and d'' > d', so that $|f(x)| \leq M(d') |x|_{d'} \leq M(d') |x|_{d''}$, which shows that D_f is a cofinal subsystem of D.

Theorem 4. (i) $|f|_d \ge 0$; and if $|f|_d = 0$ then $f(x) \equiv 0$,