27. On a Characterisation of Order-preserving Mapping-lattice.

By Atuo KOMATU.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., March 12, 1943.)

1. Introduction. A mapping f of a lattice L_1 into a lattice L_2 is called order preserving, when for any two elements a > b of L_1 , there holds the relation f(a) > f(b) in the order of L_2^{10} . If we define $f_1 > f_2$, when for any element a of $L_1 f_1(a) > f_2(a)$ is satisfied, then the set of all order preserving mappings forms a lattice $\{f\}$. The join $f_1 \cup f_2$ and the meet $f_1 \cap f_2$ are respectively defined by the following mappings:

$$(f_1 \cup f_2)(a) = f_1(a) \cup f_2(a),$$

 $(f_1 \cap f_2)(a) = f_1(a) \cap f_2(a).$

In this paper we are concerned with the problem of a latticetheoretic characterisation of this order preserving transformation-lattice for the case, when L_2 is the two-element lattice $\{0, 1\}$.

The lattice L^* in the theorem of this paper is isomorphic with the ring of all *M*-closed subsets of the lattice *L* of its join-irreducible elements. Evidently we can generalise the theorem for the case, when *L* is only a partially ordered set in the order of L^* . In this case we can therefore omit the condition (iv) of the theorem²). When L_1 is a Boolean algebra, i. e. the lattice of all subsets of a set *R*, whose order relation is defined by the inclusion relation as usual, then the mappinglattice is the same as the covering lattice of all subsets of *R*.

2. Transformation-lattice.

Lemma 1. All order preserving mappings $\{f\}$ of a lattice L into the lattice $\{0, 1\}$ form a complete and complete distributive lattice.

Proof. For any subset $\{f_x | x \in X\}$ of $\{f\}$ and for any element a of L we have the relations;

$$(\bigcup_{x|X} f_x)(a) = \bigcup_{x|X} (f_x(a)) ,$$

$$(\bigcap_{x|X} f_x)(a) = \bigcap_{x|X} (f_x(a)) .$$

Furthermore for one element $f_0 \in \{f\}$ we can easily prove

$$ig(f_0 \cup ig(\bigwedge_{x \mid X} f_x ig) ig)(a) = f_0(a) \cup ig(\bigwedge_{x \mid X} f_x ig)(a) = f_0(a) \cup ig(\bigwedge_{x \mid X} f_x(a) ig) = f_0(a) \cup ig(\bigwedge_{x \mid X} f_x(a) ig) = ig(ig(f_0 \cup f_x ig) ig) = ig(ig)_{x \mid X} ig((f_0 \cup f_x)(a) ig) \,,$$

1) We use the symbol > in the meaning of the usual symbol \geq .

2) See Birkhoff: Lattice Theory, p. 76.