26. On a Characterisation of Join Homomorphic Transformation-lattice

By Atuo KOMATU.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., March 12, 1943.)

1. Introduction. A mapping f of a lattice L_1 into a lattice L_2 is called join homomorphic, when for any elements a, b of L_1 there exists the relation

$$f(a \cup b) = f(a) \cup f(b)$$
.

This mapping is order preserving, for, if a > b in L_1 , it follows $f(a) = f(a \cup b) = f(a) \cup f(b)$, i. e. f(a) > f(b) in L_2 .

If we define $f_1 > f_2$, when for any element a of L_1 $f_1(a) > f_2(a)$ is satisfied, then the set of all join homomorphic transformations forms a partially ordered set $\{f\}$. If L_2 is complete and completely distributive, then $\{f\}$ is a complete lattice. For there exist the following relations for any element a of L_1

$$(f_1 \cup f_2)(a) = f_1(a) \cup f_2(a) ,$$

$$(\bigcup_X (f_x \mid X))(a) = \bigcup_X (f_x(a) \mid X) ,$$

$$(f_1 \cap f_2)(a) = \bigcup_X (g_x(a) \mid X) ,$$

$$(\bigwedge_X (f_x \mid X))(a) = \bigcup_Y (h_y(a) \mid Y) ,$$

where $\{g_x \mid x \in X\}$ is the set of all transformations such that $g_x < f_1, f_2$, and $\{h_y \mid y \in Y\}$ is the set of all transformations such that $h_y < f_x$ for all x of X. This join $f_1 \cup f_2$, meet $f_1 \cap f_2$, complete join $\bigvee_X f_x$ and complete meet $\bigwedge_Y f_x$ are again clearly join homomorphic transformations.

In this paper we are concerned with the problem of a lattice-theoretic characterisation of this join homomorphic transformation-lattice for the case, when L_2 is the two-element lattice $\{0, 1\}$.

Lemma 1. All ideals in L form a lattice, which is dual isomorphic with the join homomorphic transformation-lattice $\{f\}$ of L into $\{0,1\}$.

Proof. Let f be a join homomorphic mapping of L into $\{0,1\}$. Then the set $f^{-1}(0)$ is an ideal in L. For if $a, b \in f^{-1}(0)$, then $f(a \cup b) = f(a) \cup f(b) = 0$; therefore $a \cup b \in f^{-1}(0)$. And if $a \in f^{-1}(0)$, b < a, then clearly f(b) < f(a) = 0. Hence $f^{-1}(0)$ includes b.

Conversely, let $\mathfrak A$ be an ideal in L, then the transformation f such that

$$f(a)=0$$
, $a \in \mathfrak{A}$,
 $f(a)=1$, $a \notin \mathfrak{A}$,

¹⁾ Cf. A. Komatu. On a Characterisation of Order Preserving Transformation-lattice. Proc. 19 (1943), 27.