102 [Vol. 19,

22. A Remark on Ergodic Theorems.

By Shin-ichi Izumi.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., March 12, 1943.)

- 1. G. D. Birkhoff proved the following theorems.
- (B. 1) Let T be a measure preserving transformation in (0,1) such that the inverse transformation T^{-1} is also. Then for any x=x(t) in L=L(0,1) the limit

$$\lim_{N\to\infty}\frac{1}{N+1}\sum_{n=0}^{N}x(T^nt)\tag{1}$$

exists almost everywhere.

(B,2) Let $T^{\lambda}(-\infty < \lambda < \infty)$ be a set of transformations satisfying above condition such that $T^{\lambda}(T^{\mu}t) = T^{\lambda+\mu}t$. If $x(T^{\lambda}t)$ is measurable in the product space (λ,t) and is integrable in (0,1) with respect to t, then the limit

$$\lim_{N\to\infty} \frac{1}{N} \int_0^N x(T^{\lambda}t) d\lambda \tag{2}$$

exists almost everywhere.

These are called individual ergodic theorems. Convergence in (1) and (2) is not dominated by integrable functions in general. But Fukamiya and Wiener proved that

(FW) If T (or $T^{\lambda}(-\infty < \lambda < \infty)$ satisfies above condition and $x(t) \in L_Z$, that is, $x(t) \log^+|x(t)|$ is integrable, then (1) (or (2)) converges dominated by integrable functions almost everywhere.

This is called dominated ergodic theorem. To prove above three theorems Wiener proved the fundamental lemma:

(W) Let x(t) be a non-negative integrable function and

$$x^*(t) = 1$$
 u. b. $\frac{1}{N+1} \sum_{n=0}^{N} x(T^n t)$ (or = 1, u. b. $\frac{1}{N} \int_{0}^{N} x(T^{\lambda} t) d\lambda$)

then we have for any a > 0

$$((t; x^*(t) > a) \leq \int_a^1 x(t) dt.$$

- 2. In order to prove (B, 1), (B, 2) Wiener proved the mean ergodic theorem in L. But we can prove them directly by using a convergence theorem due to Kantorovitch. Kantorovitch's theorem reads as follows.
- (K) Let X and Y be regular vector lattices and $\{U_n(x)\}$ be a sequence of (t, t)-continuous operations from X to Y. Then if
- 1°. for x in a dense set D in X $U_n(x)$ is (o)-(or (t)-) convergent,