48. Relation between the Measures $\wedge_a(X)$ and $m^*(X)$.

By Sôichi KAKEYA, Masamiti MIBU and Hideo YONEMURA. Mathematical Institute, Tokyo Imperial University. (Comm. by S. KAKEYA, M.I.A., May 12, 1943.)

A function of set $\Gamma(X)$, which is defined and non-negative for all sets of a metrical space, will be called an outer measure in the sense of Carathéodory or simply Carathéodory measure, if it subject the following conditions:

- (C-I) $\Gamma(X) \leq \Gamma(Y)$ whenever a set Y includes a set X,
- (C-II) $\Gamma(\sum_{n=1}^{\infty} X_n) \leq \sum_{n=1}^{\infty} \Gamma(X_n)$ for every sequence $\{X_n\}_{n=1,2,\dots}$ of sets,
- (C-III) $\Gamma(X+Y) = \Gamma(X) + \Gamma(Y)$ whenever the distance $\rho(X, Y) > 0$.

Now in any separable metrical space, we can define, as the following manner, a function of set which is one of Carathéodory measures.

Let α be an arbitrary positive number. Given a set in the space, we shall denote, for each positive number ϵ , by $\bigwedge_{\alpha}^{(\epsilon)}(X)$ the greatest lower bound of the sums $\sum_{n=1}^{\infty} [d(X_n)]^{\alpha}$, for which $(X_n)_{n-1,2,\ldots}$ is an arbitrary partition of the set X into a sequence of sets whose diameters $d(X_n)$ are less than ϵ .

When ϵ tends to 0, the number $\bigwedge_{\alpha}^{(\epsilon)}(X)$ tends, in a monotone nondecreasing manner, to a unique limit (finite or infinite), which we shall denote by $\bigwedge_{\alpha}(X)$. The function $\bigwedge_{\alpha}(X)$ of set thus defined is an outer measure in the sense of Carathéodory.

For, when $\epsilon > 0$, we clearly have,

- (I) $\bigwedge_{a}^{(e)}(X) \leq \bigwedge_{a}^{(e)}(Y)$ whenever X < Y,
- (II) $\bigwedge_{a}^{(\epsilon)}(\sum_{n=1}^{\infty}X_{n}) \leq \sum_{n=1}^{\infty}\bigwedge_{a}^{(\epsilon)}(X_{n})$ for any sequence of sets,
- (III) $\wedge_{a}^{(\epsilon)}(X+Y) = \wedge_{a}^{(\epsilon)}(X) + \wedge_{a}^{(\epsilon)}(Y)$ if $\rho(X, Y) > \epsilon$.

Making here $\varepsilon \rightarrow 0$, (I), (II) and (III) become respectively the three conditions (C-I), (C-II) and (C-III). (vide; Saks: Theory of the integral, § 8, Chap.-II.)

In particular, we shall study the relation of $\bigwedge_2(X)$ thus defined and Lebesgue outer measure $m^*(X)$ in the two-dimensional Euclidean space.

First, we shall show two necessary lemmas.

Lemma I. Among the class of all sets whose diameters do not exceed a given constant, the set having the largest Lebesgue outer measure is the circle. In the other words $d(E)^2 \pi/4 \ge m^*(E)$ for each bounded set *E*. (vide; Bonnesen-Fenchel; Theorie d. Konvexen Körper, S. 76 u. 107.)

Lemma II. Let $\{I_n\}_{n-1,2,\dots}$ be an arbitrary sequence of the closed circles which covers a set X. Then the greatest lower bound of the sums $\sum_{n=1}^{\infty} m^*(I_n)$ coincides with Lebesgue outer measure of X.