366 [Vol. 19,

74. On Cardinal Numbers Related with a Compact Abelian Group.

By Shizuo KAKUTANI.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., July 12, 1943.)

- §1. Throughout the present paper we use the following notation:
- (1) p(A) = the cardinal number of a set A.

Let G be a compact abelian group containing an infinite number of elements, and let us put

- (2) $\mathfrak{v}(G)$ = the smallest cardinal number $\mathfrak{v}(\Gamma)$ of a system $\mathfrak{V}(0)$ = $\{V_r(0) \mid r \in \Gamma\}$ of open neighborhoods $V_r(0)$ of the zero element 0 of G which defines¹⁾ the topology of G at 0,
- (3) $\mathfrak{o}(G)$ = the smallest cardinal number $\mathfrak{p}(\Gamma)$ of a system $\mathfrak{D} = \{O_r \mid r \in \Gamma\}$ of open subsets O_r of G which defines²⁾ the topology of G,
- (4) b(G) = the smallest cardinal number v(D) of a subset D of G which is everywhere dense in G.

The purpose of the present paper is to evaluate the cardinal numbers $\mathfrak{p}(G)$, $\mathfrak{v}(G)$, $\mathfrak{o}(G)$ and $\mathfrak{d}(G)$ in terms of the cardinal number $\mathfrak{m} = \mathfrak{p}(G^*)$ of the discrete character group G^* of G. The main results may be stated as follows:

Theorem 1. $\mathfrak{p}(G)=2^{\mathfrak{m}}$.

Theorem 2. v(G) = v(G) = ut.

Theorem 3. b(G)=n, where n is the smallest cardinal number which satisfies $2^n \ge m$.

Theorem 1 is a generalization of the fact that a compact abelian group containing an infinite number of elements has always a cardinal number $\geq c$, and that there is no compact abelian group whose cardinal number is exactly \aleph_0 . Further, assuming the generalized continuum hypothesis: $2^{\aleph_a} = \aleph_{a+1}$, it follows from Theorem 1 that there is no compact abelian group whose cardinal number is exactly \aleph_a if α is a limit ordinal. Theorem 2 implies as a special case that a compact abelian group G is separable³⁾ (and hence metrisable) if and only if the discrete character group G^* of G is countable, and if and only if

¹⁾ A system $\mathfrak{V}(a) = \{V_{r}(a) \mid r \in \Gamma\}$ of neighborhoods $V_{r}(a)$ of a point a of a topological space \mathfrak{Q} defines the topology of \mathfrak{Q} at a if, for any neighborhood V(a) of a in \mathfrak{Q} , there exists a $r \in \Gamma$ such that $V_{r}(a) \subseteq V(a)$.

²⁾ A system $\mathfrak{Q} = \{O_T \mid T \in \Gamma\}$ of open subsets O_T of a topological space \mathcal{Q} defines the topology of \mathcal{Q} if, for any $\alpha \in \mathcal{Q}$ and for any neighborhood $V(\alpha)$ of α in \mathcal{Q} , there exists a $T \in \Gamma$ such that $\alpha \in O_T \subseteq V(\alpha)$.

³⁾ A topological space \mathcal{Q} is separable (=satisfies the second countability axiom of Hausdorff) if there exists a countable family $\mathfrak{D} = \{O_n | n=1, 2, ...\}$ of open subsets O_n of \mathcal{Q} which defines the topology of \mathcal{Q} .