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1. Throughout the present paper we use the following notation"

(1) O(A) the cardinal number of a set A.

Let G be a compact abelian group containing an infinite number
of elements, and let us put

(2) O(G)=the smallest cardinal number O(F) of a system .(0)=
{ Vr(0) l)" e/} of open neighborhoods Vr(0) of the zero element
0 of G which definesD the topology of G at 0,

(3) (G)=the mallest cardinal number O(F) of a system
{Or !)" e F} of open subsets Or of G which defines2) the topology
of G,

(4) b(G)=the smallest cardinal number l(D) of a subset D of G
which is everywhere dense in G.

The purpose of the present paper is to evaluate the cardinal
numbers O(G), o(G), o(G) and b(G) in terms of the cardinal number
m=p(G*) of the discrete character group G* of G. The main results
may be stated as follows"

Theorem 1. O(G)=2n’.
Theorem . v(G) o(G) m.
Theorem 3. b(G)=n, where n is the smallest cardinal number

which satisfies 2"=> m.
Theorem 1 is a generalization of the fact that a compact abelian

group containing an infinite number of elements has always a cardinal
number :> , and that there is no compact abelian group whose cardinal
number is exactly be0. Further, assuming the generalized continuum
hypothesis" 2=t/, it follows from Theorem 1 that there is no
compact abelian group whose cardinal number is exactly t if a is a
limit ordinal. Theorem 2 implies as a special case that a compact
abelian group G is separable3) (and hence metrisable) if and only if
the discrete character group G* of G is countable, and if and only if

1) A system ’2(a)--{ Vr(a)]r e r) of neighborhoods Vr(a) of a point a of a topo-
logical space defines the topology of ? at a if, for any neighborhood V(a) of a in
9, there exists a " e I-’ such that lr(a V(a).

2) A system --{Or]" e F) of open sulJsets Or of a topological space defines
the topology of if, for any a e and for any neighborhood V(a) of a in P., there
exists a e ir such that a e Or V(a).

3) A topological space 9 is separable (=satisfies the second countability axiom of
Hausdorff) if there exists a countable family )-{0,n--1,2 } of open sut-ets O,
of @ which defines the topology of .


