85. On the Strong Summability of Fourier Series.

By Gen-ichirô SUNOUCHI.

(Comm. by M. FUJIWARA, M.I.A., Oct. 12, 1943.)

Let f(x) be a real function of period 2π , integrable L over $(0, 2\pi)$, and let

$$f(x) \sim \frac{1}{2} a_0 + \sum_{\nu=1}^{\infty} (a_{\nu} \cos \nu x + b_{\nu} \sin \nu x).$$

By $s_n(x)$ and $\sigma_n(x)$ we denote the *n*-partial sum and the *n*-th arithmetic mean of the above series, respectively.

Zygmund¹⁾ has proved the following theorem.

If f is in L^p , where p > 1, then

$$\int_{0}^{2\pi} \left\{ \sum_{n=1}^{\infty} (s_n - \sigma_n)^2 / n \right\}^{\frac{1}{2}p} dx \leq A_p \int_{0}^{2\pi} |f|^p dx ,$$

where A_p depends on p.

In \$1, the author proves that the exponent 2 in the left hand side series may be replaced by arbitrary index $m \ge 2$. In \$2, we give a theorem on the strong summability of double Fourier series. The case of index m=2 has been given by Marcinkiewicz.²⁾ Finally in \$3, the strong summability theorem of lacunary sequence of partial sums is proved. The case of index m=2 has been investigated by Zalcwasser³⁾ and Zygmund.⁴⁾

I. We begin with some preliminary lemmas.⁵⁾

Lemma 1. If $\{n_k\}$ denotes any sequence of positive integers satisfying the condition $n_{k+1}/n_k > a > 1$, then

$$\int_{0}^{2\pi} \left(\sum_{k=1}^{\infty} |s_{n_k} - \sigma_{n_k}|^2 \right)^{\frac{1}{2}p} dx \leq B_p \int_{0}^{2\pi} |f|^p dx \, .$$

This is known.⁶⁾

Lemma 2. Let f_1, f_2, \dots be a sequence of functions of period 2π , integrable L, and let $s_{n,\nu}$ denotes the ν -th partial sum of the Fourier series of f_n . Then

$$\int_{0}^{2\pi} \left(\sum_{n=1}^{\infty} |s_{n, k_{n}}|^{m}\right)^{p} dx \leq C_{m, v} \int_{0}^{2\pi} \left(\sum_{n=1}^{\infty} |f_{n}|^{n}\right)^{p} dx,$$

where p > 1 and m > 1.

This lemma is due to Boas and Bochner⁷ when $k_n = \nu$. But the

¹⁾ A. Zygmund, Fund. Math., 30 (1938), 170-196.

²⁾ J. Marcinkiewicz, Annali di Pisa, 8 (1939), 149-160.

³⁾ Z. Zalcwasser, Studia Math., 6 (1936), 82-88.

⁴⁾ A. Zygmund, loc. cit.

⁵⁾ $A_{m, p}, B_{m, p}, \dots$ denote constants depending only on m and p.

⁶⁾ A. Zygmund, loc. cit.

⁷⁾ R. P. Boas, Jr. and S. Bochner, Journ. London Math. Soc., 14 (1939), 62-73.