107. Über die masstreuen Abbildungen in Produkträumen.

Von Yukiyosi KAWADA.

Mathematisches Institut, Tokyo Bunrika Daigaku. (Comm. by T. Takagi, M.I.A., Nov. 12, 1943.)

Es sei $(\mathcal{Q}, \mathbf{B}, m)$ ein Massraum mit $m(\mathcal{Q})=1$: also die Zusammenfassung eines abstrakten Raumes \mathcal{Q} , eines Borelschen Mengenkörpers \mathbf{B} von Teilmengen von \mathcal{Q} und eines vollständig-additiven Masses m auf \mathbf{B} ; und \mathbf{T} sei eine masstreue Abbildung auf \mathcal{Q} . $(\mathcal{Q}', \mathbf{B}', m')$ sei ferner ein anderer Massraum und \mathbf{T}' sei eine masstreue Abbildung auf \mathcal{Q}' . Wir definieren auf dem Produktraum

(1)
$$\overline{\mathcal{Q}} = \mathcal{Q} \times \mathcal{Q}', \quad \overline{\mathcal{Q}} \ni \overline{\omega} = (\omega, \omega'), \quad \omega \in \mathcal{Q}, \quad \omega' \in \mathcal{Q}'$$

die Abbildung $\overline{T} = T \times T'$ durch

(2)
$$\overline{T}\overline{\omega} = (T\omega, T'\omega')$$
,

dann ist \overline{T} eine masstreue Abbildung auf dem Produktraum $(\overline{\mathcal{Q}}, \overline{B}, \overline{m})$, wobei \overline{B} der kleinste $E \times E'$ $(E \in B, E' \in B')$ enthaltende Borelsche Mengenkörper und \overline{m} das Produktmass $m \times m'$ auf \overline{B} ist. In der vorangehenden Note haben wir uns mit dem Fall beschäftigt, wo T vom Mischungstypus im witerein Sinne ist. In der vorliegenden Note soll der allgemeine Fall spektraltheoretisch untersucht werden.

Es sei G die additive Gruppe (mod. 2π) aller Eigenwerte λ von $T: x_{\lambda}(T\omega) = e^{i\lambda}x_{\lambda}(\omega), (0 \pm x_{\lambda} \in L^{2}(\Omega))$. Entsprechend sei G' bzw. \overline{G} die Gruppe der Eigenwerte von T' bzw. \overline{T} .

Satz 1. \overline{G} ist das Kompositum von G und G':

$$\overline{G} = \{G, G'\} = \{\lambda + \lambda' ; \lambda \in G, \lambda' \in G'\}$$
.

Satz 2. Die notwendige und hinreichende Bedingung dafür, dass \overline{T} ergodisch ist, ist folgende:

- (i) T und T' sind ergodisch,
- (ii) $G \cap G' = 0.2$

Korollar 1. Falls T und T' vom Mischungstypus im weiteren Sinne (d. h. T und T' ergodisch und G=G'=0) sind, so ist auch \overline{T} vom Mischungstypus im weiteren Sinne.

Korollar 2. Falls T vom Mischungstypus ist, so ist für jede

¹⁾ Über die masstruen Abbildung vom Mischungstypus im weiteren Sinne, diese Proc., 19 (1943), 518-522.

²⁾ Ein bekannter Spezialfall ist der folgende: es seien $\mathcal Q$ bzw. $\mathcal Q'$ die reelle Menge (0.1], $\mathcal B$ bzw. $\mathcal B'$ die Gesamtheit aller Borelschen Menge auf (0.1] und m bzw. m' das Lebesguesche Mass. Es seien ferner $T_\omega = \omega + \lambda \pmod{1}$ und $T'\omega' = \omega' + \lambda' \pmod{1}$. Die Bedingungen (i), (ii) im Satz 2 sind folgende: (i) λ und λ' sind irrational, (ii) λ/λ' ist irrational. Denn G bzw. G' ist in diesem Falle $\{n\lambda' \pmod{1}\}$ bzw. $\{n\lambda' \pmod{1}\}$ und die Bedingung $G \cap G' = 0$ bedeutet, dass $m\lambda = n\lambda' \pmod{n}$, $m = \pm 1, \pm 2, \ldots$) niemals gilt.