616 [Vol. 19,

128. Über den Operatorenring Banachscher Räume.

Von Yukiyosi KAWADA.

Mathematisches Institut, Tokyo Bunrika Daigaku.

(Comm. by T. TAKAGI, M.I.A., Dec. 13, 1943.)

Es sei $\mathfrak X$ ein Banachscher Raum (kurz B. R.), und $\mathfrak R(\mathfrak X)$ der Ring aller beschränkten linearen Operatoren von $\mathfrak X$. M. Eidelheit¹⁾ hat bewiesen, dass aus dem Ringisomorphismus von $\mathfrak R(\mathfrak X_1)$ und $\mathfrak R(\mathfrak X_2)$ der Isomorphismus²⁾ von $\mathfrak X_1$ und $\mathfrak X_2$ folgt; dass also die Struktur des Raumes $\mathfrak X$ durch die des Ringes $\mathfrak R(\mathfrak X)$ charakterisiert wird. In dieser Hinsicht haben auch S. Kakutani und G. Mackey³⁾ eine Charakterisierung der Operatorenringe Hilbertscher Räume gegeben. In dieser Note sollen nun einige Eigenschaften von $\mathfrak R(\mathfrak X)$ aufgestellt werden, und daraus die Sätze von Eidelheit und von Kakutani-Mackey aufs neue hergeleitet werden.

1. Es sei \mathfrak{X} ein reeller oder komplexer B. R. mit Elementen x, y, \ldots $\mathfrak{R}(\mathfrak{X})$ sei die Gesamtheit aller beschränkten linearen Operatoren A von \mathfrak{R} , dann ist $\mathfrak{R}(\mathfrak{X})$ ein Ring mit der Multiplikationseinheit I(Ix=x). Ferner ist $\mathfrak{R}(\mathfrak{X})$ ein B. R. in bezug auf die Norm $||A|| = \sup_{|x|=1} ||Ax||$, und es gilt $||AB|| \leq ||A|| \cdot ||B||$. $\mathfrak{R}(\mathfrak{X})$ ist also ein nichtkommutativer normierter Ring.

Lemma 1. Für jedes minimale Linksideal $\mathfrak A$ von $\mathfrak R(\mathfrak X)$ gibt es ein beschränktes lineares Funktional f_0 von $\mathfrak X$ mit der folgenden Eigenschaft: zu jedem Operator $A \in \mathfrak A$ ordnet sich eineindeutig ein Element $y \in \mathfrak X$ zu, so dass

$$Ax = f_0(x) \cdot y$$

gilt. Dabei ist ersichtlich $||A|| = ||f_0|| \cdot ||y||$. Falls $||f_0|| = 1$ ist, dann wird durch die Zuordnung: $A \leftrightarrow y$ in (1) eine Äquivalenz $\mathfrak{X} \cong \mathfrak{A}^{\bullet}$ vermittelt. Dieser Isomorphismus lässt sogar $\mathfrak{R}(\mathfrak{X})$ als Linksoperatorenbereich zu. Umgekehrt ist die Gesamtheit aller Operatoren A, die durch die Formel (1) für ein bestimmtes f_0 definiert wird, ein abgeschlossenes minimales Linksideal von $\mathfrak{R}(\mathfrak{X})$.

Beweis. Es sei $A_1 \in \mathfrak{A}$ und $A_1z_1 \neq 0$. Dann gibt es ein lineares Funktional f_1 mit $f_1(z_1) \neq 0$. Für einen durch $A_0x = f_1(x) \cdot y_1$ definierten Operator A_0 gilt $A_0A_1x = f_1(A_1x) \cdot y_1$, und $A_0A_1z_1 = f_1(z_1) \cdot y_1 \neq 0$. Da \mathfrak{A} minimal ist, muss $\mathfrak{A} = \mathfrak{R}(\mathfrak{X})A_0A_1$ sein, d. h.

$$\mathfrak{A} = (A_y; A_y x = f_0(x)y, y \in \mathfrak{X}), \quad f_0(x) = f_1(A_1 x).$$

Die Gleichung $BA_yx=f_0(x)\cdot By=A_{By}x$ zeigt den Operatorisomorphismus von $\mathfrak{A}\cong\mathfrak{X}$. Die Umkehrung ist klar.

¹⁾ M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math., 9 (1939), 97-104.

²⁾ Vgl. S. Banach, Théorie des opérations linéaires, (1932), S. 180.

Vgl. S. Kakutani, Über den Verband und Ring Banachscher Räume, (Japanisch), Isô-Sûgaku, 5 (1943), 1-11.

⁴⁾ \cong zeigt die Äquivalenz und \cong zeigt den Isomorphismus von Banachschen Bäumen. Vgl. loc. cit. 2), S. 180.