127. On Compact Topological Rings.

by Hirotada ANZAI.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., Dec. 13, 1943.)

In this paper we shall study compact or locally compact topological rings, where, by a topological ring, we mean a ring with topology with respect to which the operations x-y and xy are continuous as a function of two variables. We do not assume that the multiplication is commutative. When a topological ring R is observed as an abelian group with respect to addition, R is denoted by G. In §1, we shall discuss the case when R is compact, by representing R as the ring of endomorphisms of the character group G^* of G. In §2, we shall give some remarks on locally compact rings by making use of the results obtained in §1.

§1. Let R be a compact topological ring, and G^* the character group of R(=G). The mapping $x \to (\varphi, xa)$, where $x \in G$, $\varphi \in G^*$, and $a \in R$ is fixed, gives rise to a new character $\theta_a \varphi \in G^*$ which is defined by $(\theta_a \varphi, x) = (\varphi, xa)$. It is easy to see that $\varphi \to \theta_a \varphi$ is an endomorphism of G^* into itself. The set of all endomorphisms θ_a of G^* , where a runs through R, is denoted by R^* . Clearly $\theta_{a+b} = \theta_a + \theta_b$ and $\theta_{ab} = \theta_a \theta_b$. Thus $a \to \theta_a$ determines a homomorphism Γ from R onto R^* .

Let us introduce a topology into the ring θ of all endomorphisms θ of G^{*1} . To this end it suffices to give a system of neighborhoods of the zero endomorphism. We define a neighborhood of zero as follows:

$$\mathbf{V}^{*}_{\varphi_{1},...,\varphi_{n}: F,\varepsilon}(0) = \big\{\theta \, \big| \, (\theta\varphi_{i},x) \, | < \varepsilon \text{ for all } x \, \varepsilon \, F, \, i = 1, \, ..., \, n \big\},$$

where $\varphi_i \in G^*$, i=1, ..., n, F is an arbitrary compact set in G, and $\epsilon > 0$ is an arbitrary positive number. With respect to this topology, θ is obviously a topological ring. As a subset of θ , R^* is also topologized. We shall now prove that Γ is continuous as a mapping of R onto R^* . For this purpose let us consider the set

$$A = \{a \mid a \in R, |(\theta_a \varphi_i, x)| < \varepsilon \text{ for all } x \in F, i = 1, ..., n\}$$
$$= \{a \mid a \in R, |(\varphi_i, xa)| < \varepsilon \text{ for all } x \in F, i = 1, ..., n\},\$$

where $\varphi_i \in G^*$, i=1, ..., n, F is an arbitrary compact set in G, and $\varepsilon > 0$ is an arbitrary positive number. We first note that, for any $\varphi \in G^*$, $\{x \mid |(\varphi, x)| < \varepsilon\}$ is an open set in G. Then, by appealing to the following lemma, it is easy to see that A is an open set in G, which implies that Γ is continuous.

Lemma. Let F be a compact set in R, and let U be an open set

¹⁾ S. Kakutani informed the author of the fact that the topological ring θ had been discussed by M. Abe in his note: Über die Automorphismen der lokalbikompakten abelschen Gruppen, Proc. 15 (1940), 59.