3. Positive Definite Integral Quadratic Forms and Generalized Potentials.

By Syunzi KAMETANI.

Tokyo Zyosi Koto Sihan-Gakko, Koisikawa, Tokyo. (Comm. by S. KAKEYA, M.I.A., Jan. 12, 1944.)

I. Positive definite integral quadratic forms.

Let Ω be a separable, metric space with metric $\rho(p,q)$ $(p \in \Omega$ and $q \in \Omega$). Suppose that the function $\mathscr{O}(p,q)$ defined for all points $p \in \Omega$ and $q \in \Omega$ satisfies the following conditions $1^{\circ})-5^{\circ}$:

1°)
$$\Phi(p,q) = \Phi(q,p) \ge 0, \quad \Phi(p,p) = +\infty,$$

2°) $\lim_{\rho(p, q) \to 0} \Phi(p, q) = +\infty,$

3°) $\Phi(p,q)$ is a continuous function of (p,q) whenever $p \neq q$.

Before the condition 4°) is mentioned, it seems convenient to begin with some preliminary remarks.

Given a bounded Borel set E in Ω , let σ be any completely additive function of Borel sets on E. Then by Jordan's decomposition theorem¹), we may write $\sigma = \sigma^+ - \sigma^-$, where σ^+ and σ^- are the positive and negative variations of σ respectively, each of which is itself a non-negative, completely additive set-function defined for all Borel sets contained in E.

Now, consider the following integral:

$$\iint \mathcal{P}(p, q) d\sigma(p) d\tau(q)$$

$$= \lim_{N \to \infty} \iint \mathcal{P}_{N}(p, q) d\sigma^{+}(p) d\tau^{+}(q) + \lim_{N \to \infty} \iint \mathcal{P}_{N}(p, q) d\sigma^{-}(p) d\tau^{-}(q)$$

$$- \lim_{N \to \infty} \iint \mathcal{P}_{N}(p, q) d\sigma^{-}(p) d\tau^{+}(q) - \lim_{N \to \infty} \iint \mathcal{P}_{N}(p, q) d\sigma^{+}(p) d\tau^{-}(q),$$
where $\mathcal{P}_{N}(p, q) = \text{Min } \{N, \mathcal{P}(p, q)\}.$

$$\int \text{ is used for } \int_{E} \text{throughout this Note, so that } \iint \text{ for } \int_{E} \int_{E}.$$

If all the four terms involved are finite, then the integral is said to be *absolutely convergent*. Thus the 4th condition is:

4°)
$$+\infty \ge \iint \varphi(p,q) d\sigma(p) d\sigma(q) \ge 0$$

except when the integral is meaningless,

5°) if $\iint \Phi(p, \sigma) d\sigma(p) d\sigma(q) = 0$, then we have $\sigma(e) = 0$ for any Borel set e < E.

1) S. Saks: Theory of the Integral, (1937), Chap. I.