2. On Conformal Mapping of an Infinitely Multiply Connected Domain.

By Masatsugu Tsujı.
Mathematical Institate, Tokyo Imperial University. (Comm. by T. Yosie, m.i.A., Jan. 12, 1944.)

1. Let G be a Fuchsian group of linear transformations, which make $|z|<1$ invariant and D_{0} be its fundamental domain containing $z=0$ and bounded by orthogonal circles to $|z|=1$ and D_{n} be its equivalent and e_{n} be the set on $|z|=1$, which belongs to the boundary of D_{n}. Let z_{0} be a point in D_{0} and z_{n} be its equivalent in D_{n}.

Theorem I. If $m e_{0}>0$, then $\sum_{n=0}^{\infty} m e_{n}=2 \pi$ and $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<0$.

$$
\begin{aligned}
& \text { If } m e_{0}=0 \text {, then } \sum_{n=0}^{\infty} m e_{n}=0 \text { and } \sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty \text {, } \\
& \qquad \sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)^{2}<\infty .
\end{aligned}
$$

Let D be a domain on the w-plane, bounded by a closed set E, which contains at least three points and $\mathscr{F}^{(\infty)}$ be the simply connected universal covering Riemann surface of the outside of E. We map $\mathfrak{F}^{(\infty)}$ on $|z|<1$ by $w=\varphi(z)$. R. Nevanlinna ${ }^{(1)}$ proved that if cap. $E>0$, then E corresponds to a set of measure 2π on $|z|=1$ and if cap. $E=0$, then E corresponds to a set of measure zero on $|z|=1$, when z tends to $|z|=1$ non-tangentially. $\varphi(z)$ is automorphic with respect to a group G of linear transformations, which make $|z|<1$ invariant. Let D_{0} be its fundamental domain containing $z=0$ and bounded by orthogonal circles to $|z|=1$ and D_{n} be its equivalent and e_{n} be the set on $|z|=1$, which belongs to the boundary of D_{n}. Then from Theorem I, we have easily:
Theorem II (Precised form of R. Nevanlinna's theorem).

$$
\begin{aligned}
& \text { If cap. } E>0 \text {, then } \sum_{n=0}^{\infty} m e_{n}=2 \pi . \\
& \text { If cap. } E=0 \text {, then } \sum_{n=0}^{\infty} m e_{n}=0
\end{aligned}
$$

2. Let F be a Riemann surface spread over the w-plane and $F^{(\infty)}$ be its covering Riemann surface of planar character and $\mathfrak{F}^{(\infty)}$ be its simply connected universal covering Riemann surface. We map $F^{(\infty)}$ on a schlicht domain D on the z-plane. D is the outside of a certain closed set E. We suppose that we can map $\mathfrak{F}^{(\infty)}$ on a unit circle $|\zeta|<1$ by $w=\varphi(\zeta) . \quad \varphi(\zeta)$ is automorphic with respect to a group G of linear transformations, which make $|\zeta|<1$ invariant. Let D_{0} be its fundamental domain containing $\zeta=0$ and bounded by orthogonal
[^0]
[^0]: 1) R. Nevanlinna: Eindeutige analytische Funktionen. Berlin, 1936,
