2. On Conformal Mapping of an Infinitely Multiply Connected Domain.

By Masatsugu TSUJI. Mathematical Institute, Tokyo Imperial University. (Comm. by T. YOSIE, M.I.A., Jan. 12, 1944.)

1. Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and D_0 be its fundamental domain containing z=0 and bounded by orthogonal circles to |z|=1 and D_n be its equivalent and e_n be the set on |z|=1, which belongs to the boundary of D_n . Let z_0 be a point in D_0 and z_n be its equivalent in D_n .

Theorem I. If
$$me_0 > 0$$
, then $\sum_{n=0}^{\infty} me_n = 2\pi$ and $\sum_{n=0}^{\infty} (1 - |z_n|) < 0$.
If $me_0 = 0$, then $\sum_{n=0}^{\infty} me_n = 0$ and $\sum_{n=0}^{\infty} (1 - |z_n|) = \infty$,
 $\sum_{n=0}^{\infty} (1 - |z_n|)^2 < \infty$.

Let D be a domain on the *w*-plane, bounded by a closed set E, which contains at least three points and $\mathfrak{F}^{(\infty)}$ be the simply connected universal covering Riemann surface of the outside of E. We map $\mathfrak{F}^{(\infty)}$ on |z| < 1 by $w = \varphi(z)$. R. Nevanlinna⁽¹⁾ proved that if cap. E > 0, then E corresponds to a set of measure 2π on |z|=1 and if cap. E=0, then E corresponds to a set of measure zero on |z|=1, when z tends to |z|=1 non-tangentially. $\varphi(z)$ is automorphic with respect to a group G of linear transformations, which make |z| < 1invariant. Let D_0 be its fundamental domain containing z=0 and bounded by orthogonal circles to |z|=1 and D_n be its equivalent and e_n be the set on |z|=1, which belongs to the boundary of D_n . Then from Theorem I, we have easily:

Theorem II (Precised form of R. Nevanlinna's theorem).

If cap.
$$E > 0$$
, then $\sum_{n=0}^{\infty} me_n = 2\pi$
If cap. $E = 0$, then $\sum_{n=0}^{\infty} me_n = 0$

2. Let F be a Riemann surface spread over the *w*-plane and $F^{(\infty)}$ be its covering Riemann surface of planar character and $\mathfrak{F}^{(\infty)}$ be its simply connected universal covering Riemann surface. We map $F^{(\infty)}$ on a schlicht domain D on the *z*-plane. D is the outside of a certain closed set E. We suppose that we can map $\mathfrak{F}^{(\infty)}$ on a unit circle $|\zeta| < 1$ by $w = \varphi(\zeta)$. $\varphi(\zeta)$ is automorphic with respect to a group G of linear transformations, which make $|\zeta| < 1$ invariant. Let D_0 be its fundamental domain containing $\zeta = 0$ and bounded by orthogonal

¹⁾ R. Nevanlinna: Eindeutige analytische Funktionen. Berlin, 1936,