17. Normed Rings and Spectral Theorems, III.

By Kôsaku Yosida.

Mathematical Institute, Nagoya Imperial University. (Comm. by T. TAKAGI, M.I.A., Feb. 12, 1944.)

§1. A Spectral theorem. Let \mathbf{R} be a function ring of real-valued continuous functions S(M) on a bicompact Hausdorff space \mathfrak{M} . We assume that \mathbf{R} satisfies

(1) for any pair $M_1, M_2 \in \mathfrak{M}$ there exists $S(M) \in \mathbb{R}$ such that $S(M_1) \neq S(M_2)$.

Then, by Gelfand-Silov's abstraction of Weierstrass' polynomial approximation theorem¹⁾,

(2) every continuous function on \mathfrak{M} may be uniformly approximated by functions $\in \mathbf{R}$.

Next let F(S) be a linear functional on R:

(3)
$$\begin{cases} F(\alpha S + \beta U) = \alpha F(S) + \beta F(U) & (\alpha, \beta = \text{scalars}), \\ F(S_n) \to F(S) & (n \to \infty) & \text{if } \sup_{M} |S_n(M) - S(M)| \to 0 \quad (n \to \infty). \end{cases}$$

We further assume that

(4)
$$F(S) \ge 0$$
 if $S(M) \ge 0$ on \mathfrak{M} ,

(5)
$$F(I)=1$$
, where $I(M)\equiv 1$ on \mathfrak{M}

Then, by (2)-(5) and Riesz-Markoff-Kakutani's theorem²⁾, we have the representation :

(6)
$$F(S) = \int_{\mathfrak{M}} S(M)\varphi(dM) \qquad S \in \mathbf{R}$$

where φ is a non-negative, continuous from above set function countably additive on Borel sets $\subseteq \mathfrak{M}$ and $\varphi(\mathfrak{M})=1$. Here the continuity from above means that the value of the function on a set is equal to the infimum of its values on open sets covering this set.

We have, from (6),

(7)
$$\begin{cases} F(T) = \int_{\mathfrak{M}} T(M)\varphi(dM) = \int_{\lambda_0}^{\lambda_1} \lambda d\tau(\lambda), \quad \lambda_0 = \inf_M T(M), \quad \lambda_1 = \sup_M T(M), \\ \tau(\lambda) = \varphi(M; T(M) < \lambda). \end{cases}$$

Put

(8)
$$\mu = \sup_{\lambda} \left(\lambda \, ; \, \tau(\lambda + \varepsilon) - \tau(\lambda - \varepsilon) > 0 \quad \text{for all} \quad \varepsilon > 0 \right).$$

 μ may be called as the maximal spectrum of F referring to T. We will prove the

¹⁾ Rec. Math., 9 (1941), Cf. also H. Nakano: 全國紙上數學談話會, 218 (1941).

²⁾ A. Markoff: Rec. Math., 4 (1938). S. Kakutani: Proc. 19 (1943).