PAPERS COMMUNICATED

12. Projective Parameters in Projective and Conformal Geometries.

By Kentaro YANO.

Mathematical Institute, Tokyo Imperial University. (Comm. by S. KAKEYA, M.I.A., Feb. 12, 1944.)

§1. Projective parameters in projective geometry.

In an *n*-dimensional space A_n with the affine connection Γ_{jk}^i , a system of curves called paths is defined by the differential equations of the form

(1.1)
$$\frac{d^2x^i}{ds^2} + \Gamma^i_{jk}\frac{dx^j}{ds}\frac{dx^k}{ds} = 0 \qquad (i, j, k, \dots = 1, 2, \dots, n)$$

as autoparallel curves, where s is called affine parameter on each path. Conversely, if we are given the differential equations of the form (1.1) in an *n*-dimensional space X_n , we can define a symmetric affine connection in this space taking Γ_{jk}^i as the components of the connection. The study of the properties of these differential equations constitutes the affine geometry of paths¹⁾. But, an affine connection is not defined uniquely by the system of paths (1.1). H. Weyl²⁾ and L. P. Eisenhart³⁾ have independently shown that any two affine connections whose components $\overline{\Gamma}_{jk}^i$ and Γ_{jk}^i are related by the equations of the form

(1.2)
$$\overline{\Gamma}^{i}_{jk} = \Gamma^{i}_{jk} + \delta^{i}_{j}\psi_{k} + \delta^{i}_{k}\psi_{j},$$

where ψ_j are components of an arbitrary covariant vector not necessarily gradient, give the same paths. In this sense, the change over from $\overline{\Gamma}_{jk}^i$ to Γ_{jk}^i is called the projective change of affine connections, and the study of those properties which are invariant under such changes of affine connections is called the projective geometry of paths⁴.

To study the projective geometry of paths, T.Y. Thomas⁵⁾ has introduced the functions

(1.3)
$$\Pi_{jk}^{i} = \Gamma_{jk}^{i} - \frac{1}{n+1} (\delta_{j}^{i} \Gamma_{ak}^{a} + \delta_{k}^{i} \Gamma_{aj}^{a}),$$

which are invariant under projective change of affine connections (1.2).

¹⁾ L.P. Eisenhart and O. Veblen: The Riemann geometry and its generalisation. Proc. Nat. Acad. Sci. 8 (1922), pp. 19-23.

²⁾ H. Weyl: Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung. Göttinger Nachrichten (1921), pp. 99-112.

³⁾ L. P. Eisenhart: Spaces with corresponding paths. Proc. Nat. Acad. Sci. 8 (1922), pp. 233-238.

⁴⁾ O. Veblen: Projective and affine geometry of paths. ibidem, pp. 347-350.

⁵⁾ T.Y. Thomas: On the projective and equi-projective geometries of paths, ibidem, **11** (1925), pp. 199-203.