105. On the Reducibility of the Differential Equations in the n-Body Problem.

By Yusuke Hagihara, m.i.a.
Astronomical Department, Tokyo Imperial University.

(Comm. Oct. 12, 1944.)
It is known that the system of differential equations for the motion of n bodies can be reduced to a system of differential equations of order $6 n-12$ from that of order $6 n$ by the aid of the Eulerian integrals of the eliminations of the node and of the time. Lie's theory on the contact transformation groups and the function-groups has been applied for carrying out the effective reduction of the order of this system of differential equations ${ }^{1}$. Among others E. Cartan's procedure is the most elegant in employing the theory of integral invariants ${ }^{2}$. In the present note I propose to modify the procedure by avoiding the explicit appearance of time in the treatment ${ }^{3}$ and also to discuss the n-body problem in the planar case.

Let, according to Poincaré ${ }^{4)}, x_{3 j-2}, x_{3 j-1}, x_{3 j}$ be the Cartesian coordinates of the j-th body with mass $m_{3 j-2}=m_{3 j-1}=m_{3 j},(j=1,2, \ldots, n)$, and $y_{3 j-2}, y_{3 j-1}, y_{3 j}$ be the Cartesian components of the momentum of the j-th body. Then the motion of the n bodies is represented by the following canonical system of differential equations.

$$
\frac{d x_{i}}{d t}=\frac{\partial H}{\partial y_{i}}, \quad \frac{d y_{i}}{d t}=-\frac{\partial H}{\partial x_{i}}, \quad(i=1,2, \ldots, 3 n-1,3 n),
$$

where

$$
H=T-U,
$$

$$
\begin{gathered}
T=\sum_{k=1}^{8 n} \frac{1}{2 m_{k}} y_{k}^{2}, \quad U=\sum_{i \neq j} \frac{m_{3 i} m_{3 j}}{\Delta_{i, j}}, \\
A_{i, j}^{2}=\left(x_{3 i-2}-x_{3 j-2}\right)^{2}+\left(x_{3 i-1}-x_{3 j-1}\right)^{2}+\left(x_{3 i}-x_{3 j}\right)^{2} .
\end{gathered}
$$

This system of differential equations admit the infinitesimal transformations:

$$
\begin{gathered}
A_{0} f=\frac{\partial f}{\partial t}, \quad A_{1} f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{3 j-2}}, \quad A_{2} f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{3 j-1}}, \quad A_{3} f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{3 j}}, \\
A_{4} f=\sum_{j=1}^{n}\left(-x_{3 j} \frac{\partial f}{\partial x_{3 j-1}}+x_{3 j-1} \frac{\partial f}{\partial x_{3 j}}\right), \quad A_{5} f=\sum_{j=1}^{n}\left(-x_{3 j-2} \frac{\partial f}{\partial x_{3 j}}+x_{3 j} \frac{\partial f}{\partial x_{3 j-2}}\right),
\end{gathered}
$$

1) S. Lie, Math. Ann., 8 (1874), 215; Gesammelte Abhandlung, 4 (1929), 1; Goursat, Leçons sur l'intégration des équations différentielles aux dérivées partielles du premier ordre, 1921 ; Engel-Faber, Die Lie'sche Theorie der partiellen Differentialgleichungen erster Ordnung, 1932 ; Englund, Sur les méthodes d'intégration de Lie et le problème de la mécanique céleste, Thèse, Uppsala, 1916 ; Engel, Göttinger Nachrichten, Math.Phys. Kl., 1916, 270 ; 1917, 189.
2) E. Cartan, Leçons sur les invariants intégraux, 1922.
3) Y. Hagihara, Comptes Rendus Acad. Sc. Paris, 207 (1938), 390.
4) H. Poincaré, Bulletin Astr., 14 (1897), 53; Acta Mathematica, 21 (1897), 83 Leçons de mécanique céleste, 1 (1905). Chap. I.
