142. Subprojective Transformations, Subprojective Spaces and Subprojective Collineations.

By Kentaro Yano.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. Kakeya, m.i.A., Dec. 12, 1944.)

§1. The subpaths.
Let A_{n} be an affinely connected space of n dimensions whose components of connection are $\Pi_{\mu \nu}^{\lambda}(x)$.

If we consider a curve $x^{\lambda}=x^{\lambda}(r)$ in this space, the derivative of $x^{\lambda}(r)$ with respect to the parameter r

$$
\frac{\delta x^{\lambda}}{\delta r}=\frac{d x^{\lambda}}{d r}
$$

defines the direction of the tangent at a point x^{λ} of the curve, but the covariant derivative

$$
\frac{\partial^{2} x^{\lambda}}{\partial r^{2}}=\frac{d^{2} x^{\lambda}}{d r^{2}}+\Pi_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r}
$$

of the tangent vector $\frac{d x^{\lambda}}{d r}$ does not define a direction uniquely. For, if we change the parameter r into \bar{r}, the vector $\frac{\delta^{2} x^{\lambda}}{\delta \bar{r}^{2}}$ becomes a linear combination of $\frac{\delta^{2} x^{\lambda}}{\delta r^{2}}$ and $\frac{\delta x^{\lambda}}{\delta r}$. Thus two vectors $\frac{\delta^{2} x^{\lambda}}{\delta r^{2}}$ and $\frac{\delta x^{\lambda}}{\delta r}$ define, independently of the choice of the parameter r, a two dimensional linear space. We shall call it osculating plane defined along the curve. If the curve is a so-called path the osculating plane is indeterminate.

Now, we suppose that there is given a contravariant vector field $\xi^{2}(x)$ in our affinely connected space A_{n} and shall consider a system of curves whose osculating planes contain always the contravariant vector field ξ^{λ}. The differential equations of such curves are

$$
\begin{equation*}
\left.\frac{d^{2} x^{\lambda}}{d r^{2}}+\Pi_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r}=\alpha \frac{d x^{\lambda}}{d r}+\beta \xi^{\lambda} .1\right) \tag{1.1}
\end{equation*}
$$

1) The equations of this type have first appeared in D. van Dantzig's projective geometry. See, for example, D. van Dantzig: Theorie des projektiven Zusammenhangs n-dimensionaler Räume. Math. Ann. 106 (1932), 400-454. J. A. Schouten and J. Haantjes: Zur allgemeinen projektiven Differentialgeometrie, Compositio Math. 3 (1936), 1-51. J. Haantjes: On the projective geometry of paths, Proc. of the Edinburgh Math. Soc. 5 (1937), 103-115. The paths in these theories are represented by subpaths in an affinely connected space A_{n+1} of $n+1$ dimensions which represents the projectively connected space P_{n}. The present author showed that the paths in 0 . Veblen's projective space may also be represented by subpaths in an affinely connected space A_{n+1} of $n+1$ dimensions which represents the projective space of n dimensions. See, K. Yano: Sur les équations des paths dans l'espace projectif généralisé de M. O. Veblen. To appear in the Proc. Physico-Math. Soc. Japan, 26 (1944).
