No. 10.]

142. Subprojective Transformations, Subprojective Spaces and Subprojective Collineations.

By Kentaro YANO.

Mathematical Institute, Tokyo Imperial University. (Comm. by S. KAKEYA, M.I.A., Dec. 12, 1944.)

§ 1. The subpaths.

Let A_n be an affinely connected space of *n* dimensions whose components of connection are $\Pi^{\lambda}_{\mu\nu}(x)$.

If we consider a curve $x^{\lambda} = x^{\lambda}(r)$ in this space, the derivative of $x^{\lambda}(r)$ with respect to the parameter r

$$\frac{\delta x^{\lambda}}{\delta r} = \frac{dx^{\lambda}}{dr}$$

defines the direction of the tangent at a point x^{λ} of the curve, but the covariant derivative

$$\frac{\partial^2 x^{\lambda}}{\partial r^2} = \frac{d^2 x^{\lambda}}{dr^2} + \Pi^{\lambda}_{\mu\nu} \frac{dx^{\mu}}{dr} \frac{dx^{\nu}}{dr}$$

of the tangent vector $\frac{dx^{\lambda}}{dr}$ does not define a direction uniquely. For, if we change the parameter r into \bar{r} , the vector $\frac{\partial^2 x^{\lambda}}{\partial \bar{r}^2}$ becomes a linear combination of $\frac{\partial^2 x^{\lambda}}{\partial r^2}$ and $\frac{\partial x^{\lambda}}{\partial r}$. Thus two vectors $\frac{\partial^2 x^{\lambda}}{\partial r^2}$ and $\frac{\partial x^{\lambda}}{\partial r}$ define, independently of the choice of the parameter r, a two dimensional linear space. We shall call it osculating plane defined along the curve. If the curve is a so-called path the osculating plane is indeterminate.

Now, we suppose that there is given a contravariant vector field $\xi^{\lambda}(x)$ in our affinely connected space A_n and shall consider a system of curves whose osculating planes contain always the contravariant vector field ξ^{λ} . The differential equations of such curves are

(1.1)
$$\frac{d^2x^{\lambda}}{dr^2} + \Pi^{\lambda}_{\mu\nu} \frac{dx^{\mu}}{dr} \frac{dx^{\nu}}{dr} = \alpha \frac{dx^{\lambda}}{dr} + \beta \xi^{\lambda} .^{1}$$

¹⁾ The equations of this type have first appeared in D. van Dantzig's projective geometry. See, for example, D. van Dantzig: Theorie des projektiven Zusammenhangs *n*-dimensionaler Räume. Math. Ann. **106** (1932), 400-454. J. A. Schouten and J. Haantjes: Zur allgemeinen projektiven Differentialgeometrie, Compositio Math. **3** (1936), 1-51. J. Haantjes: On the projective geometry of paths, Proc. of the Edinburgh Math. Soc. **5** (1937), 103-115. The paths in these theories are represented by subpaths in an affinely connected space A_{n+1} of n+1 dimensions which represents the projective space may also be represented by subpaths in an affinely connected space A_{n+1} of n+1 dimensions. See, K. Yano: Sur les équations des paths dans l'espace projectif généralisé de M. O. Veblen. To appear in the Proc. Physico-Math. Soc. Japan, **26** (1944).