19. Some Metrical Theorems on Fuchsian Groups.

By Masatsugu Tsujı.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. Kakeya, m.I.A., Feb. 12, 1945.)

1. Let E be a measurable set in $|z|<1$. We define its hyperbolic measure $\sigma(E)$ by $\sigma(E)=\iint_{E} \frac{d x d y}{\left(1-|z|^{2}\right)^{2}}(z=x+i y)$. Let e be a linear set on a rectifiable curve C in $|z|<1$, then its hyperbolic linear measure $\lambda(e)$ is defined by $\lambda(e)=\int_{e} \frac{|d z|}{1-|z|^{2}}$.

Let G be a Fuchsian group of linear transformations, which make $|z|<1$ invariant and D_{0} be its fundamental domain, containing $z=0$ and z_{n} be equivalents of $z_{0}=0$. For any z in $|z|<1$, we denote its equivalent in D_{0} by (z). Let $E(\theta)$ be the set of points $\left(r e^{i \theta}\right)$ in D_{0}, which are equivalent to points on a radius $z=r e^{i \theta}(0 \leqq r<1)$ of $|z|=1$. In may formar paper ${ }^{1)}$, I have proved:

Theorem 1. (i) If $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty$, then $E(\theta)$ is everywhere dense in D_{0} for almost all $e^{i \theta}$ on $|z|=1$, (ii) If $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$, then $\lim _{r \rightarrow 1}\left|\left(r e^{i \theta}\right)\right|=1$ for almost all $e^{i \theta}$ on $|z|=1$.

In this paper, we will prove the following theorem, which is a precision of Theorem 1 (i).

Theorem 2. Suppose that $\sigma\left(D_{0}\right)<\infty$. Let \wedge be a set in D_{0}, which is measurable in Jordan's sense. Let $g: z=t e^{i \theta}(0 \leqq t<1)$ be a radius of $|z|=1$ and l be a segment $(0 \leqq t \leqq r)$ on g of length r, whose hyperbolic length be L and $L(\wedge)$ be the hyperbolic measure of the set of t-values on $(0, r)$, such that $\left(t e^{i \theta}\right) \in \Lambda$. Then there exists a set e_{0} of measure zero on a unit circle $U:|z|=1$, which does not depend on \wedge, such that if $e^{i \theta} \in U-e_{0}$, then for any \wedge,

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \frac{L(\bigwedge)}{L}=\frac{\sigma(\bigwedge)}{\sigma\left(D_{0}\right)} . \tag{1}
\end{equation*}
$$

Proof. We consider D_{0} as a Riemann manifold F of constant negative curvature with $d s=\frac{|d z|}{1-|z|^{2}}$ and equivalent points are considered as the same point of F. Let $z=x+i y$ be any point of D_{0}. We associate a direction φ at z, which makes an angle φ with the real axis. Then the line elements $(z, \varphi)\left(z \in D_{0}, 0 \leqq \varphi \leqq 2 \pi\right)$ constitute a phase space Ω, which is a product space of D_{0} and a unit circle $U: \Omega=D_{0} \times U$ and the volume element $d \mu$ in Ω is defined by $d \mu=\frac{d x d y d \varphi}{\left(1-|z|^{2}\right)^{2}}$, so that $\mu(\Omega)=2 \pi \sigma\left(D_{0}\right)<\infty$.

[^0]
[^0]: 1) M. Tsuji : Theory of conformal mapping of a multiply connected domain, III. Jap. Journ. Math. 19 (1944).
