PAPERS COMMUNICATED

15. Completely Continuous Transformations in Hilbert Spaces.

By Sitiro HANAI.

Nagaoka Technical College.

(Comm. by S. KAKEYA, M.I.A., Feb. 12, 1945.)

1. By a space of type A^{1} we mean a Banach space in which there exist a linearly independent sequence $\{f_n\}$ of elements of unit norm and a double sequence $\{L_{mn}(f)\}$ of bounded linear functionals such that for every f

(A)
$$\lim_{m\to\infty} \|f - \sum_{n=1}^{m_n} L_{mn}(f) f_n\| = 0.$$

It will be seen that the conception of a space of type A is a generalization of the idea of a Banach space with a denumerable base²).

Let \mathfrak{T} denote the space of all completely continuous transformations of a Hilbert space \mathfrak{F} into itself, that is, the space of all bounded linear transformations which carry every bounded set of \mathfrak{F} into a compact set.

In this note we will prove that the space \mathfrak{T} is a separable space of type A.

2. We prove now the following theorem :

Theorem 1. In the space \mathfrak{T} , there exist a linearly independent double sequence $\{T_{ij}\}$ of elements of unit norm and a double sequence $\{a_{ij}(T)\}$ of bounded linear functionals such that for any $T \in \mathfrak{T}$

$$T = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}(T) T_{ij}.$$

Proof. Let $\{\varphi_n\}$ denote the complete orthonormal set of the space \mathfrak{F} . We define $\{T_{ij}\}$ as follows:

$$T_{ij}(x) = (x, \varphi_j)\varphi_i$$
 for all $x \in \mathfrak{H}$, $(i, j=1, 2, ...)$.

Then it is evident that $T_{ij} \in \mathfrak{T}$, $||T_{ij}||=1$ and the sequence $\{T_{ij}\}$ is linearly independent. Let \mathfrak{M}_j be the closed linear manifold determined by $\{\varphi_1, \varphi_2, \dots, \varphi_j\}$. Then we can prove that every bounded linear transformation T with domain \mathfrak{H} and with range \mathfrak{M}_1 is expressed in the form $T = \sum_{j=1}^{\infty} a_{1j}(T)T_{1j}$ where $a_{1j}(T)$ are bounded linear functionals. In fact, by use of F. Riesz' theorem³⁾ it can be easily shown that

¹⁾ The notion of a space of type A was introduced by I. Maddaus. I. Maddaus; Completely continuous linear transformations, Bull. Amer. Math. Soc. Vol. 44 (1938), 279-282.

²⁾ S. Banach; Théories des opérations linéaires, p. 110.

³⁾ M.H. Stone; Linear transformations in Hilbert space and their applications to analysis, p. 62, Theorem 2. 27.