Modified complexity and *-Sturmian word

By Izumi Nakashima,*) Jun-ichi Tamura,**) and Shin-ichi Yasutomi***)

We give analogies of the complexity p(n) and Sturmian words which are called the *-complexity $p_*(n)$ and *-Sturmian words. We announce theorems about *-Sturmian words in this paper. The proofs and details will be published elsewhere. We consider words over an alphabet $L = \{0,1\}$. Let L^n be the set of all words of length $n \geq 0$, $L^0 = \{\lambda\}$, λ is the empty word. Let L^* be the set of all finite words and L^{N} (resp. L^{-N}) be the set of right-sided (resp. left-sided) infinite words. A two-sided infinite words $W \in L^{\mathbf{Z}}$ is defined to be a map $W : \mathbf{Z} \to L$. We identify two words $V, W \in L^{\mathbf{Z}}$ if V(x+y) = W(x) for all $x \in \mathbf{Z}$ for some fixed $y \in \mathbf{Z}$. We put $L^{\wedge} = L^* \cup$ $L^{N} \cup L^{-N} \cup L^{Z}$. We denote the set of all subwords of W by D(W). We put $D(n; W) := D(W) \cap L^n$ $(n \ge 0)$. The complexity of a word W is a function defined by

$$p(n) = p(n; W) := \sharp D(n; W).$$

A *-subword w of W is a word $w \in D(W)$ which occurs infinitely many times in W. We put $D_*(n;W) := D_*(W) \cap L^n$, where $D_*(W)$ is the set of *-subwords of W. We define *-complexity

$$p_*(n) = p_*(n; W) := \sharp D_*(n; W).$$

A Sturmian word is defined to be a word $W \in L^{\mathbb{N}} \cup$ $L^{-N} \cup L^{Z}$ satisfying

$$|\xi(A) - \xi(B)| \le 1$$

for any $A, B \in D(n; W)$ for all $n \geq 0$, where $\xi(w)$ denotes the number of occurrences of a symbol 1 appearing in a word $w \in L^*$, cf. [2]. We define a *-Sturmian word to be a word $W \in L^{N} \cup L^{-N} \cup L^{Z}$ satisfying

$$|\xi(A) - \xi(B)| \le 1$$

for any $A, B \in D_*(n; W)$ for all $n \ge 1$ Let $\sigma(n; W) = \max_{A \in D(n; W)} \xi(A)$ and $\sigma'(n; \overline{W}) =$ $\min_{A \in D(n;W)} \xi(A).$

Theorem 1 (Morse and Hedlund [2]). If Wis a Sturmian word, then $p(n; W) \leq n + 1$, and there is the density $\alpha = \lim_{n \to \infty} \frac{\sigma(n, W)}{n} = \lim_{n \to \infty} \frac{\sigma'(n, W)}{n}$. We can classify one-sided or two-sided infinite

Sturmian words as follows:

(Type I) α is irrational,

(Type II) α is rational and W is purely peri-

(Type III) α is rational and W is not purely periodic.

It is known that each case can occur. The words of Type III will be referred to as skew Sturmian words. Let $0 < \alpha < 1$ and β be real numbers. We define $G(n,\alpha,\beta) = |(n+1)\alpha + \beta| - |n\alpha + \beta|$ and $G'(n,\alpha,\beta) = \lceil (n+1)\alpha + \beta \rceil - \lceil n\alpha + \beta \rceil$, where $\lfloor x \rfloor$ is the greatest integer which does not exceed x and [x] is the least integer which is not smaller than x. A word $G(\alpha, \beta) \in L^{\mathbf{N}}$ is defined by

$$G(\alpha, \beta) = G(0, \alpha, \beta)G(1, \alpha, \beta) \cdots G(n, \alpha, \beta) \cdots$$

 $G'(\alpha,\beta)$ is defined similarly by using $G'(n,\alpha,\beta)$. We set $G(\alpha) = G(\alpha,0), G'(\alpha) = G'(\alpha,0), G(n,\alpha) =$ $G(n, \alpha, 0)$ and $G'(n, \alpha) = G'(n, \alpha, 0)$.

Theorem 2 (Morse and Hedlund [2]). If α is irrational (resp. rational), then $G(\alpha, \beta)$ and $G'(\alpha, \beta)$ are Sturmian words of Type I (resp. TypeII). Conversely, if $W \in L^{\mathbf{N}}$ is a Sturmian word of type I with density $\alpha = \lim_{n \to \infty} \frac{\sigma(n, W)}{n}$, there exists a real number β such that $W = G(\alpha, \beta)$ or $W = G'(\alpha, \beta)$.

For $A, B \in L^*$ we denote by $\{A, B\}^*$ the set

$${A,B}^* := {w_1 \cdots w_n; w_i = A \text{ or } B \ n \ge 0}.$$

We say a word $W \in \{a, b\}^*$ is strictly over $\{a, b\}$ if both a and b eventually occur in W. w^* (resp. w^*) $(\lambda \neq w \in L^*)$ denote the words $w^* := www \cdots \in$ L^{N} (resp. $*w := \cdots www \in L^{-N}$), w^{n} ($n \in N \cup$ $\{0\}, w \in L^*$) is the word $w^n := v_1 v_2 \cdots v_n \ (v_i = w)$. We mean by vw (resp. vw) the word vv (resp.

Theorem 3 (Morse and Hedlund [2]). Let $W \in L^{\mathbf{N}}$ be a purely periodic Sturmian word with

^{*)} General Education, Gifu National College of Technology, 2236-2 Kamimakuwa, Shinsei-cho, Motosu-gun, Gifu 501 - 0495.

^{**)} Faculty of General Education, International Junior College, 4-15-1 Ekoda, Nakano-ku, Tokyo 165-0022.

^{***)} General Education, Suzuka National College of Technology, Shiroko, Suzuka, Mie 510-0294.