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1. Introduction. In the article [2], we in-
vestigated a possible generalization of the Cheby-
shev polynomials Tn(x), Un(x) (n 0,1, "),
focusing on the Diophantine equation satisfied by
them: () Tn(x)2- (x- 1) Un_l(x)= 1, n-
1,2," ". The crucial idea of [loc. cit.] was to re-
gard this as a defining equation of a twist of a

conic by itself. As a natural generalization, we
considered a twist of a conic by an arbitrary
hyperelliptic curve, and obtained a family of
Diophantine equations which have solutions in a
certain one-parameter family of polynomials in
one variable. In the present article, we proceed to
higher dimensional cases and consider the twist
of a double cover of the affine space of dimension
N_ 1 by itself. As a result, we find certain
families of polynomials in N variables, called the
generalized Chebyshev polynomials, which enjoy a
lot of fundamental properties similar to the ones
the usual Chebyshev polynomials do. The pur-
pose of this article is to announce these prop-
erties. Details will appear elsewhere.

2. Twist and generalized Chebyshev polyno-
mials. Let k be an arbitrary field of characteris-
tic :/: 2. Let Gm denote the multiplicative group
and let TN denote the norm torus of dimension N.
It is defined to be the kernel of the norm map
N+IGm --Gm given by the formula: (ul,

un+ 1) II ui. The norm torus Tw is stable
liN+l

under the natural action of the symmetric group

SN+ of degree N 4- 1 on Gm+1. Hence, if we de-
note by AN+ the alternating group of degree-N
4- 1, then we have quotient maps: TN TN/AN+
d TN/SN+I. We denote by A(ul," ’’, UN+1) the
difference product II (ui- u), and by D

li<jN+l

D(zx,"" ", x) its square: D D(xx,’’ ",

(A (u, ", u+x))z. Then the quotient
is defined by the equation D(z,’- ",

where xk(1 G k <_ N) denote the k-th
elementary symmetric polynomial. The rational
maps p, q are given by the formulas:

p(u,’", uu+) (x,’", xn, ),
q(xl,"’, XN, Y) (Xl,’’’, XN).

The n-th power endomorphism of GmN+I induces
the endomorphism [n] of TN, and it commutes
with the action of SN+I. Therefore we have the
following commutative diagram:

In]

In]

T/A+ T/A+

G/G/ T/S/.
(Here we used the same symbol [n] for the induced
maps). Let TN" denote the twist of TN/AN+ by the
quadratic extension k(TN/AN+I)/k(TN/SN+I),
where k(X) denotes the rational function field of
a variety X defined over k. The twist Tg’ is de-
fined over k(TN/SN+1) - k(Xl,’" ", XN) and its
defining equation is given by the following:

TN" D(Xl," ", xN) Y D(Xl,.. XN),
where the capital letters X1,’’’, XN, Y are re-
garded as variables (see [2] for the fundamental
properties of twists). As for the set TN’(k(xi,’",
XN)) of k(xl,’’’, xN)-rational points of TN’, we
have the following theorem which can be proved
in the same way as in [2]:

Theorem 2.1. There is a natural bijection be-
tween the set TN’(k(xl,’’’, XN)) and the set A
(f Ratk(TN/AN+I, TN/AN+I) f f},
where Rat(V, W)for k-varieties V, W denotes
the set of k-rational map of V to W, and denotes
the involution of Tg defined by the formula
(x,..., x, y) (x,..., x, y).
By this theorem, the n-th power map [hi corres-
ponds to a k(xl,’’’, XN)-rational point on the
twist TN’, which we denote by
(t(" (x,. ., x),. ., t(, (x,..., x), s.(x,. ., x)).
We call t(*)(xl, ", XN) (k- 1," ", N) the
generalized Chebyshev polynomial of the first kind,

and sn (x xN) the generalized Chebyshev
polynomial of the second kind, because of the fol-
lowing natural generalization of ):


