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Jackson integrals associated with root systems.
Let a be an zm-dimensional vector space over R
with an inner product <+, *>. Let R € a” be an
irreducible reduced root system and Wy be the
group generated by orthogonal reflections with
respect to the hyperplane perpendicular to a €
R, the so-called Weyl group associated with R.
Let P be the weight lattice of R defined by {u €
a*; <y, @'y € Z for any a € R}, where o' =
2a/{a, ay. We fix a base {a;," "+, a,) € R and
its fundamental weights {x,, ", x,b} € P; <y,
ajv> = 0;;. The inner product and the reflections
are uniquely extended linearly to §h = C Qpa.
We sometimes identify the vector space § with
its dual §* via the inner product <+, ->: pu(a) =
{u, av.

Let X be an algebraic torus of dimension #,
isomorphic to (C™)”". We can embed P in X by
the mapping

b = Xix =t v,
A q”n)

where ¢ = ezm/:rf, Imz > 0. We denote by X the
lattice subgroup {(¢"%,- -, ¢™;v, € ZG =1, -,
n)} © X. We identify P with X. Each a € §” de-
. . a.__ SxpaY tpa™>
fines a monomial ¢ = f; L, for ¢
=(t, -, t) €X. Toeach a € R, let k, be a
complex number such that k, = k; if la| =8I

We introduce the following function of =
(t,,- -, t,) on X (see [3)):

1—kg @
ot
@R(k;t) = tg II (q_ka—)ﬁ
a>0 (g %),
w " 1
where (), =1II,_ (1 —x¢), ¢ = 5 2 (1 -2k,

a>0
and “a > 0” means « is a positive root of R. For
simplicity we sometimes abbreviate @j(k;t) by
@, (). The function Dp(k ;) is quasi-symmetric
with respect to Wy :

00 (k; D) = Oplk; 07 (1) = U,(0- Opk; ), o€ W,

where U,(#) is a pseudo-constant, i.e, a g-periodic
function with respect to t € X such that

U,(t) = I t*eV" 9(q"t)
c >0 19(ql—k,,,tar)

oa<0
for the Jacobi elliptic theta function 9(x) = (¥)..
(q/2) (@ . {U, (D) ey, satisfies the one cocycle
condition such that U,, () = U,(#) -oU,. (8.
We let Ap denote the Weyl denominator

defined by ARz := Ha>0(t% — +7%). Let us define
IRl
Op(k; ) = Op(k; - (—1) 2 Ap(H). Then, the
function @%(k ;) also has the quasi-symmetry
0@p(k; D) = sgno-U,() - Op(k; 1), o0 E W,

Definition. We now consider the Jackson in-
tegral associated with R defined by
d,t d,t
]R(k;«S):=f Qu(k; ) —EN -0 A2
(0,601, 2 tn

=0 —-9" 2 0x(k;q"®
xeX
where & = (§,,- -, &,) is an arbitrary point of X
and ¢*& means (¢"'&,,- -, ¢™&,).

It is obvious that the Jackson integral Jp(k: &)
is a g-periodic function of £ € X if it is conver-
gent:

Jelk; ¢ = Jp(k; 8.

Let I',(x) denote the g-gamma function (1 —
Q' Q. (@)

Conjecture (product formula). The Jackson
integral Jp(k; &) can be expressed as follows:

(1) Jelk: ® = T
I, — <op @) (= <00 @)
I, —k, — <o, @), (k, — <o,, @”> + 35,)
g7r" (&)

9(g"*E™)
up to a positive integer, where 6, = 1 if a is a simple
1
root, 0, = O otherwise, and o, = 5 2iaso kot

Proposition.  The Jackson integrals of A,-type,

B,-type and G,-type have the following formulae:
n

JoB;9=m+1 0

ji=1



