A Theta Product Formula for Jackson Integrals Associated with Root Systems

By Masahiko ITO

Graduate School of Polymathematics, Nagoya University (Communicated by Heisuke HIRONAKA, M. J. A., April 14, 1997)

Jackson integrals associated with root systems. Let $\mathfrak a$ be an n-dimensional vector space over R

with an inner product $\langle \cdot, \cdot \rangle$. Let $R \subset \mathfrak{a}^*$ be an irreducible reduced root system and W_R be the group generated by orthogonal reflections with respect to the hyperplane perpendicular to $\alpha \in R$, the so-called Weyl group associated with R. Let P be the weight lattice of R defined by $\{\mu \in \mathfrak{a}^*; \langle \mu, \alpha^{\vee} \rangle \in \mathbf{Z} \text{ for any } \alpha \in R\}$, where $\alpha^{\vee} = 2\alpha/\langle \alpha, \alpha \rangle$. We fix a base $\{\alpha_1, \dots, \alpha_n\} \subset R$ and its fundamental weights $\{\chi_1, \dots, \chi_n\} \subset P$; $\{\chi_i, \alpha_j^{\vee} \} = \delta_{ij}$. The inner product and the reflections are uniquely extended linearly to $\mathfrak{h} = C \otimes_R \mathfrak{a}$. We sometimes identify the vector space \mathfrak{h} with its dual \mathfrak{h}^* via the inner product $\langle \cdot, \cdot \rangle : \mu(\alpha) = \langle \mu, \alpha \rangle$.

Let \bar{X} be an algebraic torus of dimension n, isomorphic to $(C^{\times})^n$. We can embed P in \bar{X} by the mapping

$$\mathfrak{h}^* \to \bar{X}; \chi = \nu_1 \chi_1 + \dots + \nu_n \chi_n$$
$$\mapsto q^{\chi} := (q^{\nu_1}, \dots, q^{\nu_n})$$

where $q=e^{2\pi\sqrt{-1}\tau}$, $\operatorname{Im}\tau>0$. We denote by X the lattice subgroup $\{(q^{\nu_1},\cdots,q^{\nu_n}); \nu_i\in \mathbf{Z}(i=1,\cdots,n)\}\subset \bar{X}$. We identify P with X. Each $\alpha\in \mathfrak{h}^*$ defines a monomial $t^\alpha:=t_1^{\langle \chi_1,\alpha^\vee\rangle}\cdots t_n^{\langle \chi_n,\alpha^\vee\rangle}$ for $t=(t_1,\cdots,t_n)\in \bar{X}$. To each $\alpha\in R$, let k_α be a complex number such that $k_\alpha=k_\beta$ if $|\alpha|=|\beta|$.

We introduce the following function of $t=(t_1,\cdots,t_n)$ on \bar{X} (see [3]):

$$\Phi_{R}(k;t) = t^{\ell} \prod_{\alpha>0} \frac{(q^{1-k\alpha}t^{\alpha})_{\infty}}{(q^{k\alpha}t^{\alpha})_{\infty}}$$

where $(x)_{\infty} = \prod_{\nu=1}^{\infty} (1 - xq^{\nu}), \ \ell = \frac{1}{2} \sum_{n=0}^{\infty} (1 - 2k_{\alpha})$

and " $\alpha > 0$ " means α is a positive root of R. For simplicity we sometimes abbreviate $\Phi_R(k;t)$ by $\Phi_R(t)$. The function $\Phi_R(k;t)$ is quasi-symmetric with respect to W_R :

with respect to W_R : $\sigma \Phi_R(k;t) = \Phi_R(k;\sigma^{-1}(t)) = U_\sigma(t) \cdot \Phi_R(k;t), \quad \sigma \in W_R$ where $U_\sigma(t)$ is a pseudo-constant, i.e, a q-periodic function with respect to $t \in \bar{X}$ such that

$$U_{\sigma}(t) = \prod_{\substack{\alpha > 0 \\ \alpha \neq 0}} t^{(2k_{\alpha}-1)\alpha} \frac{\vartheta(q^{k_{\alpha}}t^{\alpha})}{\vartheta(q^{1-k_{\alpha}}t^{\alpha})}$$

for the Jacobi elliptic theta function $\vartheta(x) = (x)_{\infty}$ $(q/x)_{\infty}(q)_{\infty}$. $\{U_{\sigma}(t)\}_{\sigma \in W_R}$ satisfies the *one cocycle* condition such that $U_{\sigma\sigma'}(t) = U_{\sigma}(t) \cdot \sigma U_{\sigma'}(t)$.

We let Δ_R denote the Weyl denominator defined by $\Delta_R(t) := \Pi_{\alpha>0}(t^{\frac{\alpha}{2}} - t^{-\frac{\alpha}{2}})$. Let us define $\Phi_R'(k\;;t) := \Phi_R(k\;;t) \cdot (-1)^{\frac{|R|}{2}} \Delta_R(t)$. Then, the function $\Phi_R'(k\;;t)$ also has the quasi-symmetry $\sigma\Phi_R'(k\;;t) = \operatorname{sgn}\sigma \cdot U_\sigma(t) \cdot \Phi_R'(k\;;t)$, $\sigma \in W_R$.

Definition. We now consider the Jackson integral associated with R defined by

$$J_R(k;\xi) := \int_{[0,\xi\infty]_q} \Phi_R'(k;t) \frac{d_q t_1}{t_1} \wedge \cdots \wedge \frac{d_q t_n}{t_n}$$
$$= (1-q)^n \sum_{\chi \in X} \Phi_R'(k;q^{\chi}\xi)$$

where $\xi = (\xi_1, \dots, \xi_n)$ is an arbitrary point of \bar{X} and $q^x \xi$ means $(q^{\nu_1} \xi_1, \dots, q^{\nu_n} \xi_n)$.

It is obvious that the Jackson integral $J_R(k\,:\,\xi)$ is a q-periodic function of $\xi \in \bar{X}$ if it is convergent:

$$J_R(k;q^{\chi}\xi) = J_R(k;\xi).$$

Let $\Gamma_q(x)$ denote the q-gamma function $(1-q)^{1-x}(q)_{\infty}/(q^x)_{\infty}$.

Conjecture (product formula). The Jackson integral $J_R(k;\xi)$ can be expressed as follows:

(1)
$$J_{R}(k;\xi) = \prod_{\substack{\alpha>0}} \frac{\Gamma_{q}(1-\langle \rho_{k}, \alpha^{\vee} \rangle)\Gamma_{q}(-\langle \rho_{k}, \alpha^{\vee} \rangle)}{\Gamma_{q}(1-k_{\alpha}-\langle \rho_{k}, \alpha^{\vee} \rangle)\Gamma_{q}(k_{\alpha}-\langle \rho_{k}, \alpha^{\vee} \rangle + \delta_{\alpha})} \frac{\xi^{-k_{\alpha}\alpha}(\xi^{\alpha})}{\rho(-k_{\alpha}\varepsilon^{\alpha})}$$

 $\begin{array}{c} \vartheta(q^{k_\alpha}\xi^\alpha)\\ \text{up to a positive integer, where } \delta_\alpha=1 \text{ if } \alpha \text{ is a simple}\\ \text{root, } \delta_\alpha=0 \text{ otherwise, and } \rho_k=\frac{1}{2}\sum_{\alpha>0}k_\alpha\alpha. \end{array}$

Proposition. The Jackson integrals of A_n -type, B_2 -type and G_2 -type have the following formulae:

$$J_{A_n}(\beta; \xi) = (n+1) \prod_{j=1}^{n}$$