Periodic Solutions of the Heat Convection Equations in Exterior Domains

By Kazuo ŌEDA

Faculty of Science, Japan Women's University (Communicated by Kiyosi ITÔ, M. J. A., April 14, 1997)

1. Introduction. Let $\Omega = K^c \subset \mathbb{R}^3$ where K is a compact set whose boundary ∂K is of class C^2 . We put $\partial \Omega = \Gamma = \partial K$, $\hat{\Gamma} = \Gamma \times (0, \infty)$ and $\hat{\Omega} = \Omega \times (0, \infty)$. Then we consider the periodic problem for the heat convection equation (HCE):

(1)
$$\begin{cases} u_t + (u \cdot \nabla)u = -(\nabla p)/\rho + \{1 - \alpha(\theta - \theta_0)\}g + \nu\Delta u & \text{in } \hat{\Omega}, \\ \text{div } u = 0 & \text{in } \hat{\Omega}, \\ \theta_t + (u \cdot \nabla)\theta = \kappa\Delta\theta & \text{in } \hat{\Omega}, \end{cases}$$

(2) $u(x, t)|_{\hat{F}} = 0, \ \theta(x, t)|_{\hat{F}} = \chi(x, t) \ (>0), \end{cases}$

$$\lim_{|x|\to\infty} u(x) = 0, \lim_{|x|\to\infty} \theta(x) = 0, \text{ for } t > 0,$$

(3) $u(\cdot, T) = u(\cdot, 0), \theta(\cdot, T) = \theta(\cdot, 0).$

Here u = u(x) is the velocity vector, p = p(x) is the pressure and $\theta = \theta(x)$ is the temperature; ν , κ, α, ρ and g = g(x) are the kinematic viscosity, the thermal conductivity, the coefficient of volume expansion, the density at $\theta = \Theta_0$ and the gravitational vector, respectively. As for the exterior problem of (HCE), Hishida [2] showed the global existence of the strong solution for the initial value problem (IVP) in the case that K is a ball. Recently, Oeda-Matsuda [7] showed the existence and uniqueness of weak solutions of (IVP) when K is a compact set with the boundary of class C^2 . Moreover, $\overline{O}eda$ [10] obtained the stationary weak solutions for the similar exterior domain to that of [7]. In [7] and [10], we used "the extending domain method" to get weak solutions. Namely, it is expected that the exterior domain Ω can be approximated by interior domains $\Omega_n =$ $B_n \cap \Omega$ (B_n is a ball with radius *n* and center at O) as $n \to \infty$ (see Ladyzhenskaya [3]). The purpose of the present paper is to show the existence of periodic weak solutions of (HCE) by using "the extending domain method".

2. Preliminaries. We make several assumptions: (A1) $\omega_0 \subset \text{int } K$ (ω_0 being a neighbourhood of the origine *O*) and $K \subset B = B(O, d)$, where *B* is a ball with radius *d* and center at *O*. (A2) $\partial \Omega = \Gamma = \partial K \in C^2$. (A3) g(x) is a bounded and continuous vector function in $\mathbb{R}^3 \setminus \omega_0$. Moreover

there exist $R_0 > 0$, $C_{R_0} > 0$ such that $|g| \le C_{R_0} / |x|^{\frac{5}{2} + \varepsilon}$ for $|x| \ge R_0$ ($\varepsilon > 0$ is arbitrary). (A4) $\chi \in C^2(\Gamma \times [0, \infty))$ and is periodic with respect to t with period T.

Remark 1. Thanks to (A3), we see $g \in L^{p}(\Omega)$ for $p \geq \frac{6}{5}$.

We prepare a lemma which gives us an auxiliary function (see [1] p. 131 and [11] p.175):

Lemma 2.1. There is a function $\bar{\theta}(x, t)$ which possesses the following properties (i) \sim (iv): (i) $\bar{\theta} = \chi$ on $\hat{\Gamma}$. (ii) $\bar{\theta}(x, t) \in C_0^2(\mathbf{R}_x^3)$ for any fixed t and θ , θ_t are continuous for $t \in [0, T]$. (iii) $\bar{\theta}$ is periodic in t with period T. (iv) For any $\varepsilon > 0$ and p > 1, we can retake $\bar{\theta}$, if necessary, such that $\sup_{t \in [0,T]} \|\bar{\theta}(t)\|_{L^p} < \varepsilon$.

Now we make a change of variable: $\theta = \hat{\theta} + \bar{\theta}$, and after changing of variable, we use the same letter θ . Equations (1), (2), and (3) are transformed to the following:

(4)
$$\begin{cases} u_t + (u \cdot \nabla)u = -(\nabla p)/\rho - \alpha \theta g + \nu \Delta u \\ + \{1 - \alpha(\bar{\theta} - \Theta_0)\}g & \text{in } \hat{\Omega}, \\ \text{div } u = 0 & \text{in } \hat{\Omega}, \\ \theta_t + (u \cdot \nabla)\theta = \kappa \Delta \theta - (u \cdot \nabla)\bar{\theta} - \bar{\theta}_t \\ + \kappa \Delta \bar{\theta} & \text{in } \hat{\Omega}, \end{cases}$$

(5)
$$u|_{\widehat{F}} = 0, \ \theta|_{\widehat{F}} = 0, \ \lim_{|x| \to \infty} u(x) = 0,$$

 $\lim_{|x| \to \infty} \theta(x) = 0,$

(6)
$$u(\cdot, T) = u(\cdot, 0), \ \theta(\cdot, T) = \theta(\cdot, 0).$$

We put $G = \Omega$ or $\Omega_n, \ \hat{G}' = G \times [0, T]$ and $\widehat{G \cup \Gamma}' = (G \cup \Gamma) \times [0, T]$. Then we write

 $G \cup \Gamma' = (G \cup \Gamma) \times [0, T].$ Then we write $W^{k,p}(G) = \{u; D^{\alpha}u \in L^{p}(G), |\alpha| \leq k\}, \quad W_{0}^{k,p}(G)$ $= \text{the completion of } C_{0}^{k}(G) \text{ in } W^{k,p}(G),$ $D_{\sigma}(G) = \{\varphi \in C_{0}^{\infty}(G); \text{div } \varphi = 0\}, \quad D(G) = \{\varphi$ $\in C_{0}^{\infty}(G \cup \Gamma); \varphi(\Gamma) = 0\},$ $H_{\sigma}(G) \text{ (resp. } H_{\sigma}^{1}(G)) = \text{the completion of } D_{\sigma}(G)$ in $L^{2}(G)$ (resp. $W^{1,2}(G)$),

 $H_0^1(\Omega_n)$ = the completion of $D(\Omega_n)$ in $W^{1,2}(\Omega_n)$ (it turns out $H_0^1(\Omega_n) = W_0^{1,2}(\Omega_n)$),

 $\begin{array}{l} V(\text{resp. }W) = \text{the completion of } D_{\sigma}(\mathcal{Q}) \text{ (resp. }\\ D(\mathcal{Q})) \text{ in } \|\cdot\|_{N(\mathcal{Q})}, \text{ where } \|u\|_{N(\mathcal{Q})} = \|\nabla u\|_{L^{2}(\mathcal{Q})}, \\ \hat{D}_{\sigma}(\hat{G}) = \{\varphi \in C_{0}^{\infty}(\hat{G}'); \text{ div } \varphi = 0\}, \ \hat{D}(\hat{G}) = \{\varphi \} \end{array}$