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Convergence in the Space of Fourier Hyperfunctions
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Abstract: A structural characterization of a convergent family of Fourier hyperfunc-
tions {fh ;h F} is given.

1. Notations and definitions. We denote by
Dn

the compactification of Rn, Dn- Rn U Sn-1
and supply it with the usual topology. The
sheaves and on Dn -+- iRn are defined as fol-
lows (cf. [3-6]). For any open set U D’-t iR ’,
(U) consists of those elements of (U 0 Cn)
which satisfy IF(z) -< Cv,s exp(e Rez l) uni-
formly for any open set V Cn, f" U, and for
every s > 0. Hence, g Ic - The derived sheaf
n(), denoted by , is called the sheaf of
Fourier hyperfunctions. It is a flabby sheaf on
D ([41).

Let I be a convex neighbourhood of 0 e Rn

and U- {(D" + iI) {Irnz =/= 0} }, j- 1 n.
The family {D"+ iI, U ;j- 1 n} gives a re-
lative Leray covering for the pair {Dn+ iI, (Dn

+ iI) \ Dn} relative to the sheaf . Thus (Dn)
((D -- iI) # Dn) / -]jn__ ((Dn + iI) #D"), where

(Dn -[- iI) # Dn- U (’l Un and (Dn ’]- iI) #Dn

We shall use the notation A for the set of
n-vectors with entry {-- 1,1}" the corresponding
open orthants in Rn

will be denoted by Fa, a A.
A global section f- [F] (Dn) is defined

by F ((Dn + iI) # Dn) ;F (Fo), where

Fo r(D’ + ilo), Dn + ila is an infinitesimal
wedge of type R n -t- iFO, a A.

Recall the topological structure of (Dn). Let f
[F] (D"), F (D’ + iI) # D’). Then, by

PK,s (F) SUpzRn+iK F(z) exp (-- s Rez [) I, s > 0,
K I\ {0}, is defined the family of semi-norms;
r( (D’ + iI) # D’) is a Frechet and Montel space,
as well as (Dn).

Let f-- [F] (Dn). Then we associate to
f, f (x) " Y,o sgna Fo(x + iFo0), Fo (D
q-iI) (cf. [3], Theorem 8.5.3 and Definition
8.3.1).

The Fourier transform on (D) is defined
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by the use of functions X- Z,-.. X,, where

a- + 1, k- 1, n, a (a
and Xl(t) et/(1 + et), Z_l(t) 1/(1 + et),
tER. Let u(x) oa Uo(x+ iFoO)
2aA (Xa Uo) (x + iFoO), where Xa U
iIa), a, A and decreases exponentially along
the real axis outside the closed d-th orthant.

The Fourier transform of at is defined by
(u) " E E :(zaUo) (z iVa0)

aA A

-iz yk_, E e (zaUo)(z)dx, Io,
aA A z=y

where (Z Ua) (Dn- iI) and (Z Uo)
decreases exponentially along the real axis out-
side the closed a-orthant.

An infinite-order differential operator
](D) t,l>_ob,D with liml,l_ I/I b,I a! -0
is called a local operator.

2. Convergence in (Dn). Let E be a
Frhchet space with an increasing family of semi-

norms {Pi;i N} and let F be a closed sub-
space of E. Denote by : an element of the quo-
tient space E/F defined by x E; seminorms
which induce the topology in E/F are given by
p(:) --infu P(x + y), N. In the sequel F
will be a convex cone in R ".

Proposition 1. A necessary and sufficient con-

dition that a family {: h F} converges to :P in
E/F as h oo, h F, is the existence of a

family {u E h F} such that u belongs to
the class : for every h F and uh converges to u
in E as IIh II-" oo, h F, where u belongs to the
class :.

Proof The sufficiency is trivial. Suppose
that 2 converges to : in E/F as h
F. Then for every m N there exists t, > 0
such that p,(2 a?) infP(x x + y)
< 1/m, Ilhll >- t, h e V;{t;m e N} is a

monotone increasing sequence which tends to in-
finity as m -- oo We construct a looked-for


