Convergence in the Space of Fourier Hyperfunctions

By Stevan PILIPOVIĆ and Bogoljub STANKOVIĆ

Institute of Mathematics, University of Novi Sad, Yugoslavia (Communicated by Kiyosi ITÔ, M. J. A., March 12, 1997)

Abstract: A structural characterization of a convergent family of Fourier hyperfunctions $\{f_h; h \in \Gamma\}$ is given.

_

1. Notations and definitions. We denote by D^n the compactification of \mathbb{R}^n , $D^n = \mathbb{R}^n \cup S_{\infty}^{n-1}$ and supply it with the usual topology. The sheaves $\tilde{\mathcal{O}}$ and \mathcal{Q} on $D^n + i\mathbb{R}^n$ are defined as follows (cf. [3-6]). For any open set $U \subset D^n + i\mathbb{R}^n$, $\tilde{\mathcal{O}}(U)$ consists of those elements of $\mathcal{O}(U \cap \mathbb{C}^n)$ which satisfy $|F(z)| \leq C_{V,\varepsilon} \exp(\varepsilon |\operatorname{Re} z|)$ uniformly for any open set $V \subset \mathbb{C}^n$, $\bar{V} \subset U$, and for every $\varepsilon > 0$. Hence, $\mathcal{O}|_{\mathbb{C}^n} = \mathcal{O}$. The derived sheaf $\mathscr{H}_{D^n}^n(\tilde{\mathcal{O}})$, denoted by \mathcal{Q} , is called the sheaf of Fourier hyperfunctions. It is a flabby sheaf on D^n ([4]).

Let I be a convex neighbourhood of $0 \in \mathbb{R}^n$ and $U_j = \{(D^n + iI) \cap \{\operatorname{Im} z_j \neq 0\}\}, j = 1, \ldots, n$. The family $\{D^n + iI, U_j; j = 1, \ldots, n\}$ gives a relative Leray covering for the pair $\{D^n + iI, (D^n + iI) \setminus D^n\}$ relative to the sheaf $\tilde{\mathcal{O}}$. Thus $\mathcal{Q}(D^n) = \tilde{\mathcal{O}}((D^n + iI) \# D^n) / \sum_{j=1}^n \tilde{\mathcal{O}}((D^n + iI) \#_j D^n)$, where $(D^n + iI) \# D^n = U_1 \cap \ldots \cap U_n$ and $(D^n + iI) \#_j D^n$ $= U_1 \cap \ldots \cap U_{j-1} \cap U_{j+1} \cap \ldots \cap U_n$.

We shall use the notation Λ for the set of *n*-vectors with entry $\{-1,1\}$; the corresponding open orthants in \mathbb{R}^n will be denoted by $\Gamma_{\sigma}, \sigma \in \Lambda$.

A global section $f = [F] \in \mathcal{Q}(D^n)$ is defined by $F \in \tilde{\mathcal{O}}((D^n + iI) \# D^n)$; $F = (F_{\sigma})$, where $F_{\sigma} \in \tilde{\mathcal{O}}(D^n + iI_{\sigma})$, $D^n + iI_{\sigma}$ is an infinitesimal wedge of type $R^n + i\Gamma_{\sigma}0$, $\sigma \in \Lambda$.

Recall the topological structure of $\mathcal{Q}(D^n)$. Let $f = [F] \in \mathcal{Q}(D^n)$, $F \in \tilde{\mathcal{O}}(D^n + iI) \# D^n)$. Then, by $P_{K,\varepsilon}(F) = \sup_{z \in \mathbb{R}^n + iK} |F(z)\exp(-\varepsilon |\operatorname{Re} z|)|, \varepsilon > 0$, $K \subseteq I \setminus \{0\}$, is defined the family of semi-norms; $\tilde{\mathcal{O}}((D^n + iI) \# D^n)$ is a Fréchet and Montel space, as well as $\mathcal{Q}(D^n)$.

Let $f = [F] \in \mathcal{Q}(D^n)$. Then we associate to $f, f(x) \cong \sum_{\sigma \in A} sgn\sigma F_{\sigma}(x + i\Gamma_{\sigma}0), F_{\sigma} \in \tilde{\mathcal{O}}(D^n + iI_{\sigma})$ (cf. [3], Theorem 8.5.3 and Definition 8.3.1).

The Fourier transform on $\mathcal{Q}(D^n)$ is defined

by the use of functions $\chi_{\sigma} = \chi_{\sigma_1} \dots \chi_{\sigma_n}$, where $\sigma_k = \pm 1, k = 1, \dots, n, \sigma = (\sigma_1, \dots, \sigma_n)$ and $\chi_1(t) = e^t / (1 + e^t), \chi_{-1}(t) = 1 / (1 + e^t), t \in R$. Let $u(x) \cong \sum_{\sigma \in \Lambda} U_{\sigma}(x + i\Gamma_{\sigma}0) = \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} (\chi_{\tilde{\sigma}} U_{\sigma}) (x + i\Gamma_{\sigma}0)$, where $\chi_{\tilde{\sigma}} U_{\sigma} \in \mathcal{O}(D^n + iI_{\sigma}), \sigma, \tilde{\sigma} \in \Lambda$ and decreases exponentially along the real axis outside the closed $\tilde{\sigma}$ -th orthant.

The Fourier transform of
$$u$$
 is defined by
 $\mathscr{F}(u) \cong \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} \mathscr{F}(\chi_{\tilde{\sigma}} U_{\sigma}) (x - i\Gamma_{\tilde{\sigma}} 0)$

$$= \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} \int_{\mathrm{Im} z = y^{k}} e^{-iz\zeta} (\chi_{\tilde{\sigma}} U_{\sigma}) (z) dx, y^{k} \in I_{\sigma},$$

where $\mathscr{F}(\chi_{\tilde{\sigma}} U_{\sigma}) \in \tilde{\mathcal{O}}(D^n - iI_{\tilde{\sigma}})$ and $\mathscr{F}(\chi_{\tilde{\sigma}} U_{\sigma})$ decreases exponentially along the real axis outside the closed σ -orthant.

An infinite-order differential operator $J(D) = \sum_{|\alpha| \ge 0} b_{\alpha} D^{\alpha}$ with $\lim_{|\alpha| \to \infty} \sqrt{|b_{\alpha}| \alpha!} = 0$ is called a local operator.

2. Convergence in $\mathcal{Q}(D^n)$. Let E be a Fréchet space with an increasing family of seminorms $\{P_i; i \in N\}$ and let F be a closed subspace of E. Denote by \tilde{x} an element of the quotient space E/F defined by $x \in E$; seminorms which induce the topology in E/F are given by $p_i(\tilde{x}) = \inf_{y \in F} P_i(x + y), i \in N$. In the sequel Γ will be a convex cone in \mathbb{R}^n .

Proposition 1. A necessary and sufficient condition that a family $\{\tilde{x}_h; h \in \Gamma\}$ converges to \tilde{x} in E/F as $||h|| \to \infty$, $h \in \Gamma$, is the existence of a family $\{u_h \in E; h \in \Gamma\}$ such that u_h belongs to the class \tilde{x}_h for every $h \in \Gamma$ and u_h converges to u in E as $||h|| \to \infty$, $h \in \Gamma$, where u belongs to the class \tilde{x} .

Proof. The sufficiency is trivial. Suppose that \tilde{x}_h converges to \tilde{x} in E/F as $||h|| \to \infty$, $h \in \Gamma$. Then for every $m \in N$ there exists $t_m > 0$ such that $p_m(\tilde{x}_h - \tilde{x}) = \inf_{y \in F} P_m(x_h - x + y) < 1/m$, $||h|| \ge t_m$, $h \in \Gamma$; $\{t_m; m \in N\}$ is a monotone increasing sequence which tends to infinity as $m \to \infty$. We construct a looked-for

¹⁹⁹¹ Mathematics Subject Classification: 46F15.