On the Number of Asymptotic Points of Holomorphic Curves

By Nobushige TODA

Department of Mathematics, Nagoya Institute of Technology (Communicated by Kiyosi ITÔ, M. J. A., Dec. 12, 1997)

 e_{2}, \ldots, e_{n+1}

1. Introduction. Let $f = [f_1, \ldots, f_{n+1}]$ be a transcendental holomorphic curve from C into the *n* dimensional complex projective space $P^n(C)$ with a reduced representation

$$(f_1,\ldots,f_{n+1}): \mathbb{C} \to \mathbb{C}^{n+1} - \{\mathbf{0}\},\$$

where n is a positive integer.

We use the following notation :

$$\|f(z)\| = (|f_1(z)|^2 + \dots + |f_{n+1}(z)|^2)^{1/2}$$

and for a point $\mathbf{a} = (a_1, \dots, a_{n+1})$ in $\mathbf{C}^{n+1} - \{\mathbf{O}\}$
 $\|\mathbf{a}\| = (|a_1|^2 + \dots + |a_{n+1}|^2)^{1/2},$
 $(\mathbf{a}, f) = a_1 f_1 + \dots + a_{n+1} f_{n+1},$
 $(\mathbf{a}, f(z)) = a_1 f_1(z) + \dots + a_{n+1} f_{n+1}(z),$
 $d(\mathbf{a}, f(z)) = |(\mathbf{a}, f(z))|/(\|\mathbf{a}\| \|f(z)\|).$

(On the distance "d", see [7], p. 76, where || || is used instead of d).

The characteristic function T(r, f) of f is defined as follows (see [7]):

$$T(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log \|f(re^{i\theta})\| d\theta - \log \|f(0)\|.$$

We note that
$$\lim_{r \to \infty} \frac{T(r, f)}{\log r} = \infty$$

since f is transcendental.

We put

$$\rho = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r},$$
$$\lambda = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r}$$

and we say that ρ is the order of f and λ the lower order of f.

Let

$$V = \{ a \in C^{n+1} : (a, f) = 0 \}$$

Then, V is a subspace of C^{n+1} and $0 \le \dim V \le n-1$. It is said that f is linearly nondegenerate when $\dim V = 0$ and linearly degenerate otherwise.

For meromorphic functions in $|z| < \infty$ we shall use the standard notation and symbols of the Nevanlinna theory of meromorphic functions ([2]).

For $a \in C^{n+1} - V$, we put

$$N(r, a, f) = N(r, 1/(a, f))$$

and we denote the standard basis of C^{n+1} by e_1 ,

Let X be a subset of C^{n+1} . Then, we say that X is **in general position** if the elements of X are linearly independent when $\#X \le n$ or if any n + 1 elements of X are linearly independent when $\#X \ge n + 1$.

The purpose of this paper is to extend a famous result on the number of asymptotic values of meromorphic functions obtained by Ahlfors in [1] to holomorphic curves. By the way, the result in [1] was extended to algebroid functions by Lü Yinian in [5].

2. Definition and lemma. In this section, we first give a definition of asymptotic point to holomorphic curves. Let f be as in Section 1.

Definition 1 (asymptotic point) (see Definition 3 in [6]). A point **a** of $C^{n+1} - V$ is an asymptotic point of f if and only if there exists a path Γ : $z = z(t) (0 \le t < 1)$ in $|z| < \infty$ satisfying the following conditions:

(i) $\lim_{t\to 1} z(t) = \infty$;

(ii) $\lim_{t\to 1} d(a, f(z(t))) = 0.$

Remark. This definition is a generalization of "asymptotic values" of meromorphic functions.

In fact, let $g = g_2/g_1$ be a transcendental meromorphic function in $|z| < \infty$, where g_1 and g_2 are entire functions without common zeros. Suppose that g has an asymptotic value c along a path L going from a finite point to ∞ and put \tilde{g} $= [g_1, g_2].$

(i) When
$$c \neq \infty$$
, for $\mathbf{a} = (-c, 1) \in \mathbf{C}^2$,
 $d(\mathbf{a}, \tilde{g}(z)) = \frac{|-cg_1(z) + g_2(z)|}{\|\mathbf{a}\| (|g_1(z)|^2 + |g_2(z)|^2)^{1/2}}$
 $= \frac{|g(z) - c|}{\|\mathbf{a}\| (1 + |g(z)|^2)^{1/2}} \rightarrow 0$

as $z \rightarrow \infty$ along L;

a

(ii) when $c = \infty$, for $e_1 \in C^2$,

$$\begin{aligned} \mathcal{I}(\boldsymbol{e}_{1}, \, \tilde{g}(\boldsymbol{z})) &= \frac{|g_{1}(\boldsymbol{z})|}{(|g_{1}(\boldsymbol{z})|^{2} + |g_{2}(\boldsymbol{z})|^{2})^{1/2}} \\ &= \frac{1}{(1 + |g(\boldsymbol{z})|^{2})^{1/2}} \to 0 \end{aligned}$$