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1. Introduction. Consider a linear differen-

tial equation :

(1.1) d

%Y = M(x, t)Y,
where M (x, t) is an m X m matrix whose en-
tries are rational functions of x, and depend on ¢
€ U < C’ analytically. We call the following
problem as extended Fuchs problem. “Give a con-
dition under which there exist a solution whose
monodromy groups and Stokes multipliers are in-
dependent of ¢”.

When the differential equation (1.1) is of the
form:

iY= Ax, )Y,

dx
A, b =55
j=1k=0 ( — aj) +

the Fuchs problem was studied by Jimbo-Miwa-
Ueno [4 and 6]. They show that a solution of this
problem is given by a nonlinear differential equa-
tion with the Painlevé property. This nonlinear
differential equation is called the monodromy
preserving deformation equation, called in short
MPD equation.

It is known by [7, 8, and 9] that the Garnier
system and the Painlevé equations are special
cases of MPD equation, and that each of these
equations is described as a polynomial Hamilto-
nian systems. By the use of these results, the
contiguity relations of Painlevé equations are
given by [10, 11, 12, and 13].

In this paper, we consider the Fuchs prob-
lem for the linear differential equation:
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with following assumptions
(i) &, are 2 X2 matrices,
(ii) the eigenvalues of &, are distinct up to
additive integers,
(iii) the eigenvalues of &,,, are distinct.
We show in what follows that the MPD equation

is written as a Hamiltonian system. Notice that if
g = 1, the MPD equation is equivalent to the
fourth Painlevé equation, and that if g = 2, the
MPD equation is equivalent to the nonlinear dif-
ferential equation given in [5].

2. Holonomic deformation. Theorem 2.1.
Changing suitably the variables, we can transform
(1.2) to the linear differential equation :

d 1ozl _
(2.1) a—x‘Y—-zkgoﬂkY,
which satisfies the following conditions :
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Theorem 2.2. The differential equation (2.1)
1S equivalent to the following equation :
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where b, (k =1,..., g) are
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The number of accessory parameters (2.2) is
2g. (2.2) has singular points at x = 0 and x =




