On the Zeros of $\sum a_i exp q_i^{*}$

By Tuen-Wai NG and Chung-Chun YANG

Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong (Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1997)

Abstract: We consider entire functions of the form $f = \sum a_i e^{a_i}$, where $a_i \neq 0$, g_i are entire functions and the orders of all a_i are less than one. If all the zeros of f are real, then $f=e^{q}\sum a_{i}e^{h_{i}}$, where h_{i} are linear functions. Using this result, we can prove that $f=a_{1}e^{q}$ if all zeros of f are positive, which also generalizes a result obtained by A. Eremenko and L. A. Rubel.

Key words: Zero set; entire function; Borel theorem; upper half-plane; Nevanlinna theory.

1. Introduction and main results. For $i \geq$ 1 and $z \in \mathbb{C}$, let $g_i(z)$ be entire functions. Let $a_i(z)$ be a non-zero entire function with $\rho(a_i)$ ≤ 1 , where $\rho(g)$ denotes the order of an entire function g. Let B_1 denote the class of entire functions of the form

$$
f=\sum_{i=1}^n a_i e^{a_i},
$$

where $e^{a_i - a_j}$ is non-constant for $i \neq j$.

If all the a_i , are polynomials, then such f is said to be in the class B . Clearly, B is a proper subset of B_1 .

Let $Z(g)$ be the zero set of an entire function g. In [2], by using H. Cartan's theory of holomorphic curves. A. Eremenko and L. A. Rubel proved the following theorem.

Theorem A. Let $f \in B$. If $Z(f)$ is a subset of the positive real axis, except possibily finitely many points, then $f = p e^{\theta}$, where p is a polynomial and g is an entire function.

Therefore, it is natural to ask whether we can say something about the form of f if $f \in B$ and $Z(f)$ is a subset of the real axis. By adapting some of the arguments used in [6] and Nevanlinna value distribution theory for functions meromorphic in a half plane, we can answer this question even for the case $f \in B_1$. In fact, we obtained the following results.

Theorem 1. Let $f \in B_1$. If $Z(f)$ is a subset of the real axis, except possibly finite points, then

*) The research was partially supported by ^a UGC grant of Hong Kong.

 $f(z) = e^{g(z)} \sum_{i=1}^{n} a_i(z) e^{b_i z}$, where $b_i \in C$, g and $a_i (\not\equiv 0)$ are entire functions with $\rho(a_i) \leq 1$.

Using theorem 1, we can generalize theorem A to the following theorem.

Theorem 2. Let $f \in B_1$. If $Z(f)$ is a subset of the positive real axis, except possibly finite points, then $f = ae^{a}$, where g, a are entire functions with $\rho(a) < 1$.

Our basic tool is J. Rossi's half-plane version of Borel theorem. J. Rossi proved this version in [6] by using Tsuji's half-plane version of Nevanlinna theory. Therefore, we shall start with the basic notations of Tsuji's theory (cf. [4] and [7]); assuming the readers are familiar with the Nevanlinna Theory and its basic notations (cf. $[3]$.

Let $n_{\nu}(t, \infty)$ be the number of poles of f in $\{z : |z - \frac{it}{2}| \leq \frac{t}{2}, |z| \geq 1\}$, where f is meromor-
phic in the open upper half-plane. Define
 $N(x, \infty) = N(x, t) = \int_{0}^{t} \frac{n_u(t, \infty)}{t} dt$

$$
N_u(r, \infty) = N_u(r, f) = \int_1^r \frac{n_u(t, \infty)}{t^2} dt,
$$

$$
m_u(r, \infty) = m_u(r, f)
$$

\n
$$
= \frac{1}{2\pi} \int_{\arcsin r^{-1}}^{\pi - \arcsin r^{-1}} \log^+ |f(r\sin\theta e^{i\theta})| \frac{d\theta}{r\sin^2 \theta},
$$

\n
$$
N_u(r, a) = N_u(r, \frac{1}{f-a}), m_u(r, a)
$$

\n
$$
= m_u(r, \frac{1}{f-a}) \ (a \neq \infty) \text{ and}
$$

\n
$$
T_u(r, f) = m_u(r, f) + N_u(r, f).
$$

Remark 1. We can also define m_l (r, f) , $N_1(r, f)$, $T_1(r, f)$ for functions meromorphic in the open lower half-plane in the obvious way.

Lemma 1 [4]. Let f be meromorphic in Imz

¹⁹⁹¹ Mathematics Subject Classiication. Primary 30D15.