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In his paper [2], Takase gave a formula
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expressing the cross-ratios

branch points (a,, *°, a,, a,,) of a hyperelliptic
curve C in terms of the “theta-constants”
9[nl1 (L2, 0) (2], Theorem 1.1). This was proved
by using Theorem 7.1 (Frobenius’ theta relation)
and Theorem 8.1 (Thomae’s formula) in [1]. Here
we shall remark that this formula is immediately
derived from Theorem 7.6 in [1], and that this
theohem is a direct consequence of Theorem 5.3
in (1], so that Frobenius’ relation is not needed in
our proof. Then we close the note with two corol-
laries. In this note we generally follow the
assumptions, the definitions and the notations in
[2]; but for the convenience, we recall the nota-
tions.

A positive integer g is fixed throughout the
note, and B = {1,2,...,2g+ 1}. The hyper-
elliptic curve C is defined by the equation: s’ =
(t—ay) - (t — ay,,), where a,, k=1,2,.. .,
2g + 1, are distinct complex numbers. The
points P, of C lying over a,, 1 £ k< 2g+ 1,
and P, € C over the point % of the Riemann
sphere form together the set of branch points of
C. The ordered set (a;, a, . . ., Gy, )
determines  the standard basis of the
1-dimensional homology group Hl(C, Z), the
corresponding basis (w,, @,, . . ., ®,) of the
space of holomorphic differentials on C, and the
period matrix £ of C belonging to the Siegel up-
perhalf space of genus g For each k€ B U

, 1
{oo}, a numerical vector 1, = Zf‘, e §Z2g is
. Py ¢ Py
defined by (2 1)7n, = (f W, f wg>,
P.. P.

and the subset U = {1,3,..., 2g + 1} is char-
acterized by U= {k € Ble@'n,n}) =1}). We
write e(*) = exp(2xi *). For two subsets T
and S of B U () we write TS=TUS—T

N S and p;, = 2 7,; and then we have 9.5 =
keT

7Ny + ns mod Z*. We denote the theta constant
9y 1(L2, 0) by 9[T]. The vector 7, has a
sense only upto mod Z*, and hence 9[7] is not
but 9[71? is really meaningful.
The following is the formula in ([2], Thm.
1.1), in spite of a slight difference in appearance.
Theorem 1. For any V,< B — {k, I, m},
with #V, = g — 1, we have
a, — a
(1) a4, —a,
. OV, U (k, DI*ILU-(V, U (m)]*
ILU-(V, U {m, kN1*ILU-(V, U (H]1*

Now we need the following formula in ([1],
Thm. 7.6, p.3.113).

Lemma 2. For kK € B there is a mnonzero-
constant ¢, € C”, depending only on the hyperellip-
tic curve C such that for any V; € B — {k}, with
#V, = g, we have the formula,

(2) Cr = e(zt%lﬂ'fi) II (a,—a)

i€V,
SLU-V,] 2
<19[U°(Vl U {k})]> :
This formula (and hence, Theorem 7.6 in [1]
also) is an easy combination of the formula (3) in
(1], Thm. 5.3, p.3.81) under the substitution

D= 2 P, and a familiar relation between
ieV;

9L + ] (R, 2) and IE1(R, z+ (2 1)7).

To prove the formula (1) we
9LU-(V, U {k, IN]*
9[U-(V, U {N]*

= e(2'n,,1}

have

only to apply (2) to
ILU-(V, U {m})]*

ILU-(V, U {m, k1"’ resp.) by substituting
-(V, U {m,

V, U {l} by V, (and V, U {m} by V,, resp.).

We take this opportunity to present two
corollaries, which are almost direct consequences
of theorem 1.

Corollary 3. Under the same assumptions and
notations as in theorem 1 we have,

(3.0) €@ um)en, e, = — 1.



