On the Vanishing of Iwasawa Invariants of Certain Cyclic Extensions of Q with Prime Degree

By Takashi FUKUDA

Department of Mathematics, College of Industrial Technology, Nihon University (Communicated by Shokichi IYANAGA, M. J. A., June 12, 1997)

Abstract: Let ℓ be an odd prime. In [2], Yamamoto gave a condition for (ℓ, ℓ) -extensions K of Q, under which the Iwasawa invariants $\lambda_{\ell}(K)$ and $\mu_{\ell}(K)$ vanish. In this note, we shall give a condition for (ℓ, ℓ) -extensions K of Q, which is weaker than the condition given in [2], under which we have $\lambda_{\ell}(k) = \mu_{\ell}(k) = 0$ for any subfields k of K with $[k:Q] = \ell$. Our proof is based on Greenberg's original idea (cf. [1]), which is more elementary than that in [2], using the capitulation of the ℓ -part of the ideal class group of k in the initial layer of the cyclotomic \mathbb{Z}_{ℓ} -extension of k to assure $\lambda_{\ell}(k) = \mu_{\ell}(k) = 0$.

Key words: Capitulation; Iwasawa invariants.

1. Introduction. Throughout the paper, we fix an odd prime number ℓ . For a cyclic extension k of Q of degree ℓ , we denote by A(k) the ℓ -primary part of the ideal class proup of k and B(k) the subgroup of A(k) consisting of elements which are invariant under the action of the Galois group G(k/Q). Let p_1, p_2, \dots, p_s be the prime numbers which are ramified in k/Q and let \mathfrak{p}_i be the prime ideal of k lying over p_i . Then it is easy to see from the genus theory that B(k)is an ℓ -elementary abelian group of rank s-1generated by $cl(\mathfrak{p}_1)$, $cl(\mathfrak{p}_2)$, \cdots , $cl(\mathfrak{p}_s)$. Let \bar{k} (resp. \vec{k}) be the ℓ -part of the Hilbert class field (resp. genus field) of k. Then we have the isomorphism $A(k) \xrightarrow{\sim} G(\bar{k}/k)$ and hence the surjective homomorphism

$$\varphi: A(k) \ni \operatorname{cl}(\mathfrak{a}) \mapsto \left(\frac{k/k}{\mathfrak{a}}\right) \in G(\tilde{k}/k)$$

through the Artin map.

The next lemma and corollary permit us to handle the capitulation problem in k by computation in the Galois group $G(\tilde{k}/k)$.

Lemma 1.1. We have A(k) = B(k) if and only if the restriction map $\varphi \mid B(k) : B(k) \to G(\tilde{k}/k)$ is surjective.

Proof. Let $\overline{G} = G(\overline{k}/Q)$, $X = G(\overline{k}/k)$ and $G = G(k/Q) = \langle \sigma \rangle$. Then G acts on X by an inner automorphism. Since at least one prime ideal is totally ramified in k/Q, the group extension $1 \rightarrow X \rightarrow \overline{G} \rightarrow G \rightarrow 1$ splits. Hence we see that

 $[\bar{G}, \bar{G}] = X^{\sigma-1}$ and so $A(k) / A(k)^{\sigma-1} \simeq X/X^{\sigma-1}$ $\simeq G(\tilde{k}/k)$ as *G*-module. Assume that $\varphi \mid B(k)$ is surjective. Then $A(k) = B(k)A(k)^{\sigma-1}$. Since the order of σ is ℓ and the order of A(k) is a power of ℓ , this implies A(k) = B(k). The converse is trivial.

Corollary 1.2. Assume that $\varphi \mid B(k)$ is surjective. Then an ideal \mathfrak{a} of k whose class belongs to A(k) is principal if and only if $\left(\frac{\tilde{k}/k}{\mathfrak{a}}\right) = 1$.

Proof. We have $\bar{k} = \tilde{k}$ because A(k) = B(k).

2. **Results.** For a prime number p congruent to one modulo ℓ , we denote by k_p the unique subfield of $Q(\zeta_p)$ of degree ℓ , where ζ_p is a primitive p-th root of unity. Let q be another prime number congruent to one modulo ℓ . Then $k_{p}k_{q}$ is an (ℓ, ℓ) -extension of Q and has $\ell-1$ subfields which are cyclic extensions of Q of degree ℓ , in which both p and q are ramified. Let kbe one of such subfields and \mathfrak{p}_p (resp. \mathfrak{p}_q) the prime ideal of k lying over p (resp. q). Then $B(k) = \langle cl(\mathfrak{p}_p), cl(\mathfrak{p}_q) \rangle$ and $|B(k)| = \ell$. Note that $k_p k_q$ is the ℓ -part of the genus field of k / Q. Since \mathfrak{p}_p is ramified in $k \neq Q$, $\left(\frac{k_p k_q \neq k}{\mathfrak{p}_h}\right)$ is trivial if and only if $\left(\frac{k_q/Q}{p}\right)$ is trivial. Let $\left(\frac{p}{q}\right)_\ell$ denote the ℓ -th power residue symbol. Then the following lemma is an immediate consequence of Lemma 1.1.

Lemma 2.1. We have $|A(k)| = \ell$ if and

¹⁹⁹¹ Mathematics Subject Classification, Primary 11R23.