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Abstract" Let be an odd prime. In [2], Yamamoto gave a condition for (, )-
extensions K of Q, under which the Iwasawa invariants /(K) and /(K) vanish. In this
note, we shall give a condition for (, )-extensions K of Q, which is weaker than the condi-

tion given in [2], under which we have/e(k) --/,(k) -0 for any subfields k of K with [k’Q]. Our proof is based on Greenberg’s original idea (cf. [1]), which is more elementary than
that in [2], using the capitulation of the -part of the ideal class group of k in the initial
layer of the cyclotomic Z-extension of k to assure/(k) (k) 0.

Key words" Capitulation; Iwasawa invariants.

1. Introduction. Throughout the paper, we [(, ] --Xr-1
and so A(k)/A(k)- X/X-fix an odd prime number . For a cyclic exten- G(fc/k) as G-module. Assume that q0IB(k)

sion k of Q of degree z, we denote by A(k) the is surjective. Then A(k) B(k)A(k) -1. Since
-primary part of the ideal class proup of k and the order of is and the order of A(k) is a
B(k) the subgroup of A(k) consisting of ele- power of , this implies A(k) --B(k). The con-
ments which are invariant under the action of the verse is trivial.
Galois group G(k/Q). Let pl, p., ’’, Ps be the Corollary 1.2. Assume that qo B(k) is

prime numbers which are ramified in k/Q and surjective. Then an @leal a of k whose class belongs

letpi bethe prime ideal of k lying over pi. Then [//k
it is easy to see from the genus theory that B(k) to A(k) is principal if and only if a

is an -elementary abelian group of rank s- 1 Proof We have /- / because A(k)
generated by cl(p), cl(p2)," , cl(Ps). Let k B(k).
(resp. /) be the -part of the Hilbert class field 2. Results. For a prime number p con-

(resp. genus field) of k. Then we have the iso- gruent to one modulo , we denote by kp the uni-

morphism A(k)--% G(/k) and hence the surjec- que subfield of Q(p) of degree , where is a
tire homomorphism primitive p-th root of unity. Let q be another

//k prime number congruent to one modulo . Then(p’A(k) cl() \] G(//k)
a k,kq is an (, g)-extension of Q and has - 1

through the Artin map. subfields which are cyclic extensions of Q of de-
The next lemma and corollary permit us to gree , in which both p and q are ramified. Let k

handle the capitulation problem in k by computa- be one of such subfields and p (resp. pq) the
tion in the Galois group G(k/k). prime ideal of k lying over p (resp. q). Then

Lemma 1.1. We have A(k) B(k) if and B(k) (cl(p), cl(pq)) and B(k) g. Note
only if the restriction map q B(k) B(k)--* G(/k) that kkq is the g-part of the genus field of k/Q.
is surjective. ( kpkq / k )Proof. Let (- G(//Q), X- G(fc/k) and G Since pp is ramified in k/Q, p is trivial

G(k/Q)- (a}. Then G acts on X by an in-
k)[kq/Q\ ()ner automorphism. Since at least one prime ideal

if and only if p is trivial. Let
e
denote

is totally ramified in k/Q, the group extension the g-th power residue symbol. Then the follow-
1 X--+ G--+ G--+ 1 splits. Hence we see that ing lemma is an immediate consequence of Lemma

1.1.
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11R23. Lemma 2.1. We have IA(k) l-- g if and


