On Classification of Elliptic Fibrations with Small Number of Singular Fibres Over a Base of Genus 0 and 1

By Khac Viet NGUYEN

Institute of Mathematics, National Research Center for Natural Sciences and Technology, Vietnam (Communicated by Heisuke HIRONAKA, M. J. A., June 12, 1997)

Fix an algebraically closed field k of characteristic $p \neq 2,3$. Let $f: X \rightarrow C$ be a non-trivial Jacobian elliptic fibration defined over k with a base, a smooth projective curve C. In our consideration we always assume that f is relatively minimal and "Jacobian" means that f has a global section. Recall Shioda's formula as a special case of the Ogg-Shafarevich formula (cf. [6]).

(1) $r + \rho_2 = 4g(C) - 4 + 2s - s_1$

where ρ_2 denotes the so-called Lefschetz number (the difference between the 2-nd Betti number b_2 and the Picard number ρ), r is the Mordell-Weil rank, s the number of singular fibres and s_1 denotes the number of semi-stable singular fibres (*i.e.* of type I_n in the Kodaira-Néron classification).

Since $\rho_2 \geq 0$ (Igusa's inequality), so if $C \simeq \mathbf{P}^1$ then from (1) it is clear that $s \geq 2$. On the other hand a non-trivial elliptic fibration over any base must have at least one singular fibres, because the moduli space of elliptic curves defined over k is \mathbf{A}_k^1 . It is known also that the case s = 1 over an elliptic base is in fact realized. Note one more fact: if $C \simeq \mathbf{P}^1$ and f is non-isotrivial then $s \geq 3$. This fact should be thought in a different context and in a more general situation (cf. [3]). From the classification below one obtains another proof of this fact: in other words, one sees that elliptic fibrations over \mathbf{P}^1 with s = 2 are isotrivial.

Theorem 1. In the situation above assume that $K-S(f) \neq 0$. Then we have:

A. In the case $C \simeq P^1$ and $s \leq 3: X$ is a rational or K3 surface. Furthermore one has the following complete list (for completeness isotrivial fibrations are also included).

1. Rational surfaces (s = 2, r = 0):

 $\begin{array}{l} X_{22}(II^{*}, II), \ X_{33}(III^{*}, III), \\ X_{44}(IV^{*}, IV), \ X_{11}(j)(I_{0}^{*}, I_{0}^{*}) \ \text{with} \ j \in k. \\ 2. \ \text{Rational surfaces} \ (s = 3) \\ 1) \ (r = 0): \ X_{141}(I_{1}^{*}, I_{4}, I_{1}), \ X_{222}(I_{2}^{*}, I_{2}, I_{2}), \\ X_{431}(IV^{*}, I_{3}, I_{1}), \ X_{411}(I_{4}^{*}, I_{1}, I_{1}), \end{array}$

- $\begin{array}{c} X_{431}(IV, I_3, I_1), X_{411}(I_4, I_1, I_1), \\ X_{321}(III^*, I_2, I_1), X_{211}(II^*, I_1, I_1); \\ 2) (r = 1): X_{321}^2(I_2^*, III, I_1), \end{array}$
- $\begin{array}{c} X_{321}^{1}(I_{1}^{*}, III, I_{2}), X_{211}^{1}(I_{1}^{*}, IV, I_{1}), \\ X_{321}^{1}(I_{1}^{*}, III, I_{2}), X_{211}^{1}(I_{1}^{*}, IV, I_{1}), \\ X_{341}^{1}(III^{*}, II, I_{1}), X_{341}^{2}(IV^{*}, III, I_{1}), \\ X_{431}^{2}(I_{3}^{*}, II, I_{1}), X_{431}^{3}(I_{1}^{*}, I_{3}, II), \\ X_{442}^{1}(IV^{*}, I_{2}, II); \\ \end{array}$
- 3) (r = 2): $X_{444}(IV, IV, IV),$ $X_{33}^{1}(I_{0}^{*}, III, III), X_{341}^{3}(I_{1}^{*}, III, II),$ $X_{442}^{2}(I_{2}^{*}, II, II), X_{11}^{1}(0)(I_{0}^{*}, IV, II),$ $X_{444}^{1}(IV^{*}, II, II).$
- 3. K3 surfaces (s = 3): $X_{411}^*(I_4^*, I_1^*, I_1^*), X_{222}^*(I_2^*, I_2^*, I_2^*),$ $X_{431}^*(I_3^*, IV^*, I_1^*), X_{321}^*(III^*, I_2^*, I_1^*),$ $X_{211}^{*(II^*, I_1^*, I_1^*)}, X_{11}^{*(0)}(II^*, IV^*, I_0^*),$ $X_{33}^*(III^*, III^*, I_0^*), X_{341*}^{*(III^*, IV^*, I_1^*)},$ $X_{444}^{*(II^*, II^*, IV)}, X_{442*}^{*(IV^*, IV^*, I_2^*)},$ $X_{444*}^{*(IV^*, IV^*, IV^*).$

Moreover these surfaces are unique.

B. In the case $C \simeq E$, an elliptic curve, and s = 1, the fibration $f: X \to E$ has a unique configuration (I_6^*) .

In characteristic zero, formula (1) is sufficient to conclude: $p_g(X) \leq 1$. In the general case it requires involving the so-called function field analog of Szpiro's conjecture which we formulate below.

Theorem ([1, Theorem 3]). Let $f: X \to C$ be a non-isotrivial family of elliptic curves (*i.e. j*invariant is non-constant) with conductor of degree *m*. Then

(2) $\deg(\Delta) \le 6p^e(2g(C) - 2 + m)$

where Δ is the discriminant divisor on C and e is the inseparability exponent of the induced j-map: $C \rightarrow P^{1}$.

First of all we remark that isotrivial case

The research was partially supported by the National Basic Research Program in Natural Sciences of Vietnam.