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1. Introduction. Let f(z2) be meromorphic
and locally univalent in the unit disk D = {z: | z\
< 1}. Then the Schwarzian derivative of f(2) is
defined as
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It is well-known that if f(2) is locally univalent
in D and satisfies
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then f(2) is univalent in D. Furthermore, if
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for some $(0 = ¢ < 1), then f(2) has a quasicon-
formal extension to the plane.
Chuaqui and Osgood [2] have proved that
Theorem A. Let f(2) be analytic in D with
f0)=0,f0) =1, and f7(0) =0. If f(2)
satisfies (1) then
Alzl, =D =|f@|=A(zl,»
and
Az, = =slf@l=A(zl, 0
for ze D, where A’ means the differentiation of A
with respect to 2z, and A(z, £) is defined as
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Using Theorem A, they also proved that

Theorem B. If f(2) which is normalized as
in Theorem A is analytic in D, and satisfies (1),
then f(2) has a Holder continuous extension to
| z| =1 with
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for all z, and z, in D. The exponent v1 — ¢ is
sharp.

In Theorem B, although the exponent v1 — ¢
is sharp, the Holder constant 47 /v1 — ¢ is not
sharp.
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2. Holder continuous extension. Our first
result on Hélder continuous extension is con-
tained in

Theorem 1. Let f(2) be analytic in D with
) =0, =1, and f7(0) =0. If f(2)
satisfies (1), then f(2) has a Hélder continuous
extension to | z| = 1 with
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for all z; and 2z, in | z| £ 1. The exponent y1 — ¢
is sharp.

Proof. According to Chuaqui and Osgood

[2], we have

3 |lff@l=4

4 )1—4/:

Ve
z, |

|Zl—

(1 _+_ | z |)2v—1 (1 _ Izl)zu—l
A+ 1zD*+a—1zh™*

@Qv=4y1—0,
and
41—2v
4 2| & ——mmm
( ) |f(Z l (1__|z|)1—~2v

for zeD. Let z; and 2,(2; # 2z,) be arbitrary
points in D and choose p =1 — (1 —2v) |z, —
z,|/2. Then, from (4), we have
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This gives a better result than Theorem B.



