On the Problems of Conformal Maps with Quasiconformal Extension

By HUang Xinzhong*) and Shigeyoshi OwA**)

(Communicated by Kiyosi ITÔ, M. J. A., May 13, 1996)

1. Introduction. Let $f(z)$ be meromorphic and locally univalent in the unit disk $\boldsymbol{D}=\{z:|z|$ $<1\}$. Then the Schwarzian derivative of $f(z)$ is defined as

$$
S_{f}(z)=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

It is well-known that if $f(z)$ is locally univalent in \boldsymbol{D} and satisfies

$$
\left|S_{f}(z)\right| \leqq \frac{2}{\left(1-|z|^{2}\right)^{2}} \quad(z \varepsilon \boldsymbol{D})
$$

then $f(z)$ is univalent in \boldsymbol{D}. Furthermore, if

$$
\begin{equation*}
\left|S_{f}(z)\right| \leqq \frac{2 t}{\left(1-|z|^{2}\right)^{2}} \quad(z \varepsilon \boldsymbol{D}) \tag{1}
\end{equation*}
$$

for some $t(0 \leqq t<1)$, then $f(z)$ has a quasiconformal extension to the plane.

Chuaqui and Osgood [2] have proved that
Theorem A. Let $f(\boldsymbol{z})$ be analytic in \boldsymbol{D} with $f(0)=0, f^{\prime}(0)=1$, and $f^{\prime \prime}(0)=0$. If $f(z)$ satisfies (1) then

$$
A(|z|,-t) \leqq|f(z)| \leqq A(|z|, t)
$$

and

$$
A^{\prime}(|z|,-t) \leqq\left|f^{\prime}(z)\right| \leqq A^{\prime}(|z|, t)
$$

for $z \varepsilon \boldsymbol{D}$, where A^{\prime} means the differentiation of A with respect to z, and $A(z, t)$ is defined as
(2) $A(z, t)=\left(\frac{1}{\sqrt{1-t}}\right) \frac{(1+z)^{\sqrt{1-t}}-(1-z)^{\sqrt{1-t}}}{(1+z)^{\sqrt{1-t}}+(1-z)^{\sqrt{1-t}}}$.

Using Theorem A, they also proved that
Theorem B. If $f(z)$ which is normalized as in Theorem A is analytic in \boldsymbol{D}, and satisfies (1), then $f(z)$ has a Hölder continuous extension to $|z| \leqq 1$ with

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leqq \frac{4 \pi}{\sqrt{1-t}}\left|z_{1}-z_{2}\right|^{\sqrt{1-t}}
$$

for all z_{1} and z_{2} in \boldsymbol{D}. The exponent $\sqrt{1-t}$ is sharp.

In Theorem B , although the exponent $\sqrt{1-t}$ is sharp, the Hölder constant $4 \pi / \sqrt{1-t}$ is not sharp.

[^0]2. Hölder continuous extension. Our first result on Hölder continuous extension is contained in

Theorem 1. Let $f(z)$ be analytic in \boldsymbol{D} with $f(0)=0, f^{\prime}(0)=1$, and $f^{\prime \prime}(0)=0$. If $f(z)$ satisfies (1), then $f(z)$ has a Hölder continuous extension to $|z| \leqq 1$ with

$$
\begin{aligned}
& \left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leqq\left(\frac{4}{1-\sqrt{1-t}}\right)^{1-\sqrt{1-t}} \\
& \frac{1-\sqrt{1-t}+2^{1-\sqrt{1-t}} \sqrt{1-t}}{\sqrt{1-t}}\left|z_{1}-z_{2}\right|^{\sqrt{1-t}}
\end{aligned}
$$

for all z_{1} and z_{2} in $|z| \leqq 1$. The exponent $\sqrt{1-t}$ is sharp.

Proof. According to Chuaqui and Osgood [2], we have

$$
\begin{gather*}
\left|f^{\prime}(z)\right| \leqq 4 \frac{(1+|z|)^{2 \nu-1}(1-|z|)^{2 \nu-1}}{\left((1+|z|)^{2 \nu}+(1-|z|)^{2 \nu}\right)^{2}} \tag{3}\\
(2 \nu=\sqrt{1-t})
\end{gather*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq \frac{4^{1-2 \nu}}{(1-|z|)^{1-2 \nu}} \tag{4}
\end{equation*}
$$

for $z \varepsilon \boldsymbol{D}$. Let z_{1} and $z_{2}\left(z_{1} \neq z_{2}\right)$ be arbitrary points in \boldsymbol{D} and choose $\rho=1-(1-2 \nu) \mid z_{1}-$ $z_{2} \mid / 2$. Then, from (4), we have

$$
\begin{aligned}
& \left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leqq\left|\int_{z_{1}}^{\rho z_{1}} f^{\prime}(z) d z\right|+\left|\int_{\rho z_{1}}^{\rho z_{2}} f^{\prime}(z) d z\right| \\
& \quad+\left|\int_{\rho z_{2}}^{z_{2}} f^{\prime}(z) d z\right| \\
& \quad \leqq 2 \int_{\rho}^{1} \frac{4^{1-2 \nu}}{(1-r)^{1-2 \nu}} d r+\frac{4^{1-2 \nu}}{(1-\rho)^{1-2 \nu}}\left|z_{1}-z_{2}\right| \\
& =\frac{4^{1-\sqrt{1-t}}}{\sqrt{1-t}}\left(\frac{1-\sqrt{1-t}}{2}\right)^{\sqrt{1-t}}\left|z_{1}-z_{2}\right|^{\sqrt{1-t}} \\
& \quad+\frac{4^{1-\sqrt{1-t}} 2^{1-\sqrt{1-t}}}{(1-\sqrt{1-t})^{1-\sqrt{1-t}}}\left|z_{1}-z_{2}\right|^{\sqrt{1-t}} \\
& =\frac{1}{\sqrt{1-t}}\left(\frac{8}{1-\sqrt{1-t}}\right)^{1-\sqrt{1-t}}\left|z_{1}-z_{2}\right|^{\sqrt{1-t}} \\
& \leqq \frac{8}{\sqrt{1-t}}\left|z_{1}-z_{2}\right|^{\sqrt{1-t}} \\
& <\frac{4 \pi}{\sqrt{1-t}}\left|z_{1}-z_{2}\right|^{\sqrt{1-t}} .
\end{aligned}
$$

This gives a better result than Theorem B.

[^0]: *) Department of Mathematics, Huaqiao University, China.
 **) Department of Mathematics, Kinki University.

