Quadratic Forms and Elliptic Curves. II

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U.S.A. (Communicated by Shokichi IYANAGA., M. J. A., Oct. 14, 1996)

This is a continuation of my preceding paper [2] which will be referred to as (I) in this paper. In (I), to each quadratic space (V, q) over any field k of characteristic $\neq 2$ and a pair w =(u, v) of independent and nonisotropic vectors in V, we associated an elliptic curve E_w over k: (0.1) $E_w: Y^2 = X^3 + A_w X^2 + B_w X$.,¹⁾ $A_w, B_w \in k$.

In this paper, we shall consider the converse problem. Thus, let E be an elliptic curve over k: (0.2) $E: Y^2 = X^3 + AX^2 + BX$,

$$A, B \in k, B(A^2 - 4B) \neq 0$$

We shall show that there is a quadratic space (V, q) over k and a pair w = (u, v) as above so that

(0.3) $E = E_w$. (Main Theorem). (In fact, we can choose $V = k^3$ and $q(x) = x_1^2 + x_2^2 - x_3^2$). Since E_w is provided with a point $P_w = (x_w, y_w)$,²⁾ so is E, i.e., we can write down a point on $E(\bar{k})$ explicitly. When k is a number field, we can find easily a point of infinite order in E(k) under simple conditions on A,B. On the other hand, statement like (0.3) may be viewed as an analogue (over any field k of characteristic $\neq 2$) of "Uniformization theorem of elliptic curves over C".

§1. Field of characteristic $\neq 2$. Let (V, q)be a quadratic space over a field of characteristic $\neq 2$. Consider a subset W of $V \times V$ given by (1.1) $W = \{(u, v) \in V \times V : u, v \text{ are}\}$

To each $w \in W$, we associate an elliptic curve E_w :

(1.2)
$$E_w: Y^2 = X^3 + A_w X^2 + B_w X$$

1) In this paper we shall write A_w , B_w instead of P_w , Q_w in (I).We shall also use $\langle u, v \rangle$ for inner product instead of B(u, v).

2) We wrote $P_0 = (x_0, y_0)$ in (I) for $P_w = (x_w, y_w)$.

3) By abuse of notation we shall identify H with the hyperbolic plane k^2 with the metric form $q_H(h) = h_2^2 - h_3^2$, $h = (h_2, h_3) \in k^2$.

4) Since q_H is isotropic, it can represent any element of k.

with

(1.3)
$$A_w = \langle u, v \rangle = \frac{1}{2} (q(u+v) - q(u) - q(v)),$$
$$B_w = (\langle u, v \rangle^2 - q(u)q(v))/4.$$

Conversely, let E be an elliptic curve over k of the form:

(1.4)
$$E: Y^2 = X^3 + AX^2 + BX$$

 $A, B \in k, \quad B(A^2 - 4B) \neq 0.$

(1.5) **Main theorem.** Let k be a field, $ch(k) \neq 2$, and q be a ternary quadratic form on the vector space $V = k^3$ given by $q(x) = x_1^2 + x_2^2 - x_3^2$, $x = (x_1, x_2, x_3)$. Let e = (1,0,0) and $H = \{h = (0, h_2, h_3); h_2, h_3 \in k\}$.³⁾ For any elliptic curve E of the form (1.4), let h be a vector in H such that $q_H(h) = -4B$.⁴⁾ Then the pair w = (e, Ae + h) belongs to W in (1.1) and we have $E = E_w$, ((1.2), (1.3)).

Proof. Put w = (u, v) with u = e, v = Ae + h, where $h \in H$ is a vector such that $q_H(h) = -4B$. Since $(V, q) = ke \oplus (H, q_H)$, an orthogonal direct sum with q(e) = 1, we have $A_w = \langle u, v \rangle = \langle e, Ae + h \rangle = A$ and $B_w = (\langle u, v \rangle^2 - q(u)q(v))/4 = (A^2 - q(e)q(Ae + h))/4 = (A^2 - (A^2 - 4B))/4 = B$. Since A, B are coefficients of E, we have $0 \neq B(A^2 - 4B) = B_w(A_w^2 - 4B_w)$ and hence $w = (u, v) \in W$. Q.E.D. (1.6) Corollary. Let E be an elliptic curve of the form (1.4) over k. Then $E(\bar{k})$ contains a point P = (x, y) with

$$x = ((A-1)^2 - 4B)/4, y = x^{\frac{1}{2}}(A^2 - 4B - 1)/4.$$

Proof. Using notation in the proof of (1.5), we find $q(e - v) = q(e) + q(v) - 2\langle e, v \rangle = 1$ $+ A^2 - 4B - 2A$ and $q(v) - q(e) = A^2 - 4B$ - 1. Our assertion follows from (1.5) and (1.7) of (I). Q.E.D.

§2. Number fields. Let k be a number field of finite degree over Q and \mathfrak{o} be the ring of integers of k. For a prime ideal \mathfrak{p} of \mathfrak{o} , we denote by $\nu_{\mathfrak{p}}$ the order function on k at \mathfrak{p} . An element $a \in o$ is said to be *even* if $\nu_{\mathfrak{p}}(a) > 0$ for some \mathfrak{p} which lies above 2. The next theorem provides us with a family of elliptic curves over k such