A Remark on Estimates of Bilinear Forms of Gradients in Hardy Space

By Yasuyuki SHIMIZU

Department of Mathematics, Hokkaido University (Communicated by Kiyosi IT0, M. J. A., Oct. 14, 1996)

paper [1] L.C. Evans and S. Müller established the estimate of local Hardy space norm of gradients ϕ_{r} , ϕ_{r} :

$$
(0.1) \t\t\t\t\mathbb{I} \phi \varphi_{x_1} \varphi_{x_2} \|_{h^1} + \|\phi(\varphi_{x_1}^2 - \varphi_{x_2}^2)\|_{h^1} \n\leq C(\|\varphi_{x_1}\|_{L^2(B(0,R))}^2 + \|\varphi_{x_2}\|_{L^2(B(0,R))}^2)
$$
\nprovided that

(0.2) $-\Delta\psi = \omega \ge 0$ in \mathbb{R}^2 .

Here ϕ is in $C_0^{\infty}(\mathbf{R}^2)$ and the constants C and R depends only on ϕ ; h^1 is a local Hardy space defined in §1 and $B(x, R)$ denotes the space defined in §1 and $B(x, R)$ denotes the The local Hardy space \mathcal{H}_{loc}^1 is defined by
closed ball of radius R centered at $x \in \mathbb{R}^2$. (1.2) $\mathcal{H}_{loc}^1(\mathbb{R}^n) = \{f \in L_{loc}^1(\mathbb{R}^n) \mid f^{**} \in L_{loc}^1(\mathbb{R}^n)\}$ (Another proof based on harmonic analysis is We recall the normed local Hardy space h^1

This estimate is useful in proving the exist- (1.3) ence of weak solutions for the initial value prob- with the norm lem of the two-dimensional Euler equation when $|| f ||_{h^1(\mathbf{R}^m)} = || f^{**} ||_{L^1(\mathbf{R}^m)}$.
the vorticity of the initial value is nonnegative **Definition 1.2.** For a function f in $C_0^{\infty}(\mathbf{R}^2)$, the vorticity of the initial value is nonnegative measure ([1] and Delort [3]). The assumption $\omega \geqslant$ we define the operator $(-\Delta)^{-1}$ by 0 in (0.2) is essential for the estimate (0.1) ; in fact, Evans and Müller [1] gave a counterexample for (0.1) when the condition $\omega \ge 0$ is violated. However, in their example the set where ω is form nonnegative may be complicated.

In this paper we give another counterexample for (0.1) even when ω is odd in the second variable x_2 i.e. $\omega(x_1, x_2) = -\omega(x_1, -x_2)$ and $\omega(x_1, x_2) \ge 0$ for $x_2 \ge 0$. This suggests that it is *such that* difficult to extend weak solutions for the initial-boundary value problem of the Euler $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ equation when the domain is a half space \mathbf{R}_+^2 (1.5) $\lim_{h \to \infty} || \phi(\phi_{x_1}^{\epsilon})^2 - (\phi_{x_2}^{\epsilon})^2 ||_{h^1(\mathbf{R}^2)} = \infty$ even if initial value is nonnegative in \mathbf{R}_+^2 .

To get our counterexample we construct a sequence ϕ^{ϵ} of form $\phi^{\epsilon}(x) = \phi(x/\epsilon)$. A key 1 and supp $\phi \subset B(0,1/2)$. observation is the existence of function ϕ that satisfies

$$
\int_{{\bm R}^2} \phi_{x_1}^2\,dx \neq \int_{{\bm R}^2} \phi_{x_2}^2\,dx
$$

with $-\Delta \phi = \omega$, where $\omega \in C_0^{\infty}(\mathbb{R}^2)$ is odd in the second variable x_2 and ω ,∞ 0 in $\boldsymbol{R}_{+}^{\texttt{z}},$ and $\phi\in H^1(\boldsymbol{R}^2)$; $H^1(\boldsymbol{R}^2)$ denotes the Sobolev space,

§0. Introduction. In a recent interesting i.e. the space of $f \in L^2(\mathbb{R}^2)$ with $f_{x_1}, f_{x_2} \in$
rr [1] L.C. Evans and S. Müller established $L^2(\mathbb{R}^2)$.

§1. Definition and main theorem. We begin with definition of local Hardy space as in [1].

Definition 1.1. Let η be in $C_0^{\infty}(\mathbf{R}^n)$ with $\text{supp}\eta \subset B(0,1)$ and $\int_{\mathbf{R}^n} \eta dx = 1$. For a function f in $L^1_{loc}(\mathbf{R}^n)$, $f^{(n)}$ is defined by (1.1) $f^{(4)}(x) = \sup_{0 \le r \le 1} |r|^x \int_{\mathbf{R}^n} \eta \left(\frac{r}{r}\right) f(y) dy$

given by Semmes [2].)
This estimate is useful in proving the exist. (1.3) $h^1(\mathbf{R}^n) = \{f \in L^1(\mathbf{R}^n) \mid f^{**} \in L^1(\mathbf{R}^n)\}$

$$
\|f\|_{h^1(\mathbf{R}^n)}=\|f^{**}\|_{L^1(\mathbf{R}^n)}.
$$

$$
(1.4) \quad (-\Delta)^{-1} f(x) = \frac{1}{2\pi} \int_{\mathbf{R}^2} f(y) \log |x - y| \, dy.
$$

Theorem 1.3. Let T and S be the spaces of

$$
T = \{ \omega \in C_0^{\infty}(\mathbf{R}^2) \mid \omega(x_1, x_2) \ge 0 \text{ for } x_2 \ge 0, \omega(x_1, x_2) = -\omega(x_1, -x_2) \},
$$

\n
$$
S = \{ (-\Delta)^{-1} \omega \mid \omega \in T \}.
$$

Then there exists a sequence $\{\phi^{\epsilon}\}_{0 \leq \epsilon \leq 1}$ in S

$$
\sup_{0\leq \varepsilon\leq 1}\|\,\phi^\varepsilon\,\|_{H^1(\boldsymbol{R}^2)}<\,\infty
$$

where $\phi \in C_0^{\infty}(\mathbb{R}^2)$, $0 \leq \phi \leq 1$, $\phi|_{B(0,1/8)} \equiv$

§2. Proof of theorem. At first, we show a fundamental estimate in normed local Hardy space; this is an extension of a result to Evans and Müller [1].

Lemma 2.1. Assume that
$$
f
$$
 is in $L^1(\mathbb{R}^n)$,
and $\int_{\mathbb{R}^n} f(x) dx = C_f \neq 0$. Let $f^{\epsilon}(x) = \frac{1}{\epsilon^n} f(\frac{x}{\epsilon})$.