A Remark on Estimates of Bilinear Forms of Gradients in Hardy Space

By Yasuyuki SHIMIZU

Department of Mathematics, Hokkaido University (Communicated by Kiyosi ITÔ, M. J. A., Oct. 14, 1996)

§0. Introduction. In a recent interesting paper [1] L.C. Evans and S. Müller established the estimate of local Hardy space norm of gradients ψ_{x_1} , ψ_{x_2} :

$$(0.1) \qquad \| \phi \phi_{x_1}^2 \phi_{x_2} \|_{h^1} + \| \phi (\phi_{x_1}^2 - \phi_{x_2}^2) \|_{h^1} \\ \leq C(\| \phi_{x_1} \|_{L^2(B(0,R))}^2 + \| \phi_{x_2} \|_{L^2(B(0,R))}^2) \\ \text{provided that}$$

(0.2) $-\Delta \phi = \omega \ge 0 \text{ in } \mathbf{R}^2.$

Here ϕ is in $C_0^{\infty}(\mathbf{R}^2)$ and the constants Cand \mathbf{R} depends only on ϕ ; h^1 is a local Hardy space defined in §1 and $B(x, \mathbf{R})$ denotes the closed ball of radius \mathbf{R} centered at $x \in \mathbf{R}^2$. (Another proof based on harmonic analysis is given by Semmes [2].)

This estimate is useful in proving the existence of weak solutions for the initial value problem of the two-dimensional Euler equation when the vorticity of the initial value is nonnegative measure ([1] and Delort [3]). The assumption $\omega \ge 0$ in (0.2) is essential for the estimate (0.1); in fact, Evans and Müller [1] gave a counterexample for (0.1) when the condition $\omega \ge 0$ is violated. However, in their example the set where ω is nonnegative may be complicated.

In this paper we give another counterexample for (0.1) even when ω is odd in the second variable x_2 i.e. $\omega(x_1, x_2) = -\omega(x_1, -x_2)$ and $\omega(x_1, x_2) \ge 0$ for $x_2 \ge 0$. This suggests that it is difficult to extend weak solutions for the initial-boundary value problem of the Euler equation when the domain is a half space \mathbf{R}^2_+ even if initial value is nonnegative in \mathbf{R}^2_+ .

To get our counterexample we construct a sequence ϕ^{ε} of form $\phi^{\varepsilon}(x) = \phi(x/\varepsilon)$. A key observation is the existence of function ϕ that satisfies

$$\int_{\mathbf{R}^2} \phi_{x_1}^2 \, dx \neq \int_{\mathbf{R}^2} \phi_{x_2}^2 \, dx$$

with $-\Delta \psi = \omega$, where $\omega \in C_0^{\infty}(\mathbf{R}^2)$ is odd in the second variable x_2 and $\omega \ge 0$ in \mathbf{R}_+^2 , and $\psi \in H^1(\mathbf{R}^2)$; $H^1(\mathbf{R}^2)$ denotes the Sobolev space, i.e. the space of $f \in L^2(\mathbf{R}^2)$ with $f_{x_1}, f_{x_2} \in L^2(\mathbf{R}^2)$.

§1. Definition and main theorem. We begin with definition of local Hardy space as in [1].

Definition 1.1. Let η be in $C_0^{\infty}(\mathbf{R}^n)$ with $\operatorname{supp} \eta \subset B(0,1)$ and $\int_{\mathbf{R}^n} \eta \, dx = 1$. For a function f in $L^1_{loc}(\mathbf{R}^n)$, f^{**} is defined by (1.1) $f^{**}(x) = \sup_{0 < r < 1} \left| r^{-n} \int_{\mathbf{R}^n} \eta \left(\frac{x - y}{r} \right) f(y) \, dy \right|$. The local Hardy space \mathscr{H}^1 is defined by

The local Hardy space \mathcal{H}_{loc}^{1} is defined by (1.2) $\mathcal{H}_{loc}^{1}(\mathbf{R}^{n}) = \{f \in L_{loc}^{1}(\mathbf{R}^{n}) \mid f^{**} \in L_{loc}^{1}(\mathbf{R}^{n})\}$

We recall the normed local Hardy space h^1 defined by

(1.3) $h^1(\mathbf{R}^n) = \{ f \in L^1(\mathbf{R}^n) \mid f^{**} \in L^1(\mathbf{R}^n) \}$ with the norm

$$\|f\|_{h^{1}(\mathbf{R}^{n})} = \|f^{**}\|_{L^{1}(\mathbf{R}^{n})}.$$

Definition 1.2. For a function f in $C_0^{\infty}(\mathbf{R}^2)$, we define the operator $(-\Delta)^{-1}$ by

(1.4)
$$(-\Delta)^{-1} f(x) = \frac{1}{2\pi} \int_{\mathbf{R}^2} f(y) \log |x - y| dy.$$

Theorem 1.3. Let T and S be the spaces of form

$$T = \{ \omega \in C_0^{\infty}(\mathbf{R}^2) \mid \omega(x_1, x_2) \ge 0 \text{ for} \\ x_2 \ge 0, \ \omega(x_1, x_2) = - \ \omega(x_1, - x_2) \}, \\ S = \{ (-\Delta)^{-1} \omega \mid \omega \in T \}.$$

Then there exists a sequence $\{\phi^{\epsilon}\}_{0<\epsilon<1}$ in S such that

$$\sup_{0<\varepsilon<1} \left\| \, \phi^\varepsilon \, \right\|_{H^1(\boldsymbol{R}^{2)}} < \infty$$

and

(1.5) $\lim_{\varepsilon \downarrow 0} \| \phi(\phi_{x_1}^{\varepsilon})^2 - (\phi_{x_2}^{\varepsilon})^2 \} \|_{h^1(\mathbf{R}^2)} = \infty$

where $\phi \in C_0^{\infty}(\mathbf{R}^2)$, $0 \leq \phi \leq 1$, $\phi \mid_{B(0,1/8)} \equiv 1$ and $\operatorname{supp} \phi \subset B(0,1/2)$.

§2. Proof of theorem. At first, we show a fundamental estimate in normed local Hardy space; this is an extension of a result to Evans and Müller [1].

Lemma 2.1. Assume that
$$f$$
 is in $L^{1}(\mathbf{R}^{n})$,
and $\int_{\mathbf{R}^{n}} f(x) dx = C_{f} \neq 0$. Let $f^{\varepsilon}(x) = \frac{1}{\varepsilon^{n}} f\left(\frac{x}{\varepsilon}\right)$.