A Generalization of Rosenhain's Normal Form for Hyperelliptic Curves with an Application

By Koichi TAKASE

Department of Mathematics, Miyagi University of Education (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1996)

Introduction. Let C be a compact Riemann surface of genus 2. Then C has six Wierstrass points. If we normalize three of them into 0, 1 and ∞ , the complex curve C is defined by

 $Y^2 = X(X-1)(X-\lambda_1)(X-\lambda_2)(X-\lambda_3)$. Rosenhain's normal form gives λ_1 , λ_2 and λ_3 as ratios of theta constants at the period matrix of C (see Remark 1.3).

In this paper, we will give a similar formula for the hyperelliptic curves over C of general genus (Theorem 1.1). As an application of the formula, we will give resolutions of a complex algebraic equation as ratios of theta constants at the period matrix of a suitable hyperelliptic curve (Theorem 3.1).

Such formulas were given by H.Umemura in [1] based on Thomae's formula. But adding to Thomae's formula, we have Frobenius' theta formula [1, Theorem 7.1] and a criterion of vanishing of theta constant at the period matrix of the hyperelliptic curve [1, Corollary 6.7]. Using these results, we can simplify the formula given by Umemura.

§1 Main result. Let f(X) be a separable monic polynomial with complex coefficients of degree 2g+1. Let $a_1, a_2, \cdots, a_{2g+1}$ be the roots of f(X)=0. Let $\Omega \in \mathfrak{G}_g$ be the period matrix of the hyperelliptic curve $Y^2=f(X)$. Here \mathfrak{G}_g denotes the Siegel upper half space of genus g. The ordering of the roots of f(X)=0 determines the classical basis of the first cohomology group of the hyperelliptic curve. The basis in turn defines the period matrix Ω . A theta function is defined by

$$\vartheta[\alpha](\Omega, w)$$

$$= \sum_{l \in \mathbb{Z}^g} \exp 2\pi \sqrt{-1}$$
 $\left\{\frac{1}{2}\langle l + \alpha', (l + \alpha')\Omega\rangle + \langle l + \alpha', w + \alpha''\rangle\right\},$
where $w \in \mathbb{C}^g$ and $\alpha = (\alpha', \alpha'') \in \mathbb{R}^{2g}$ are row vectors with $\alpha', \alpha'' \in \mathbb{R}^g$, and $\langle x, y \rangle = x^{\cdot t}y$.

Put

$$B = \{1, 2, 3, \dots, 2g + 1\},\ U = \{1, 3, 5, \dots, 2g + 1\}.$$

Define theta characteristics $\eta_{\it k}=(\eta_{\it k}',\eta_{\it k}'')\in \frac{1}{2}{\it Z}^{\it 2s}$

$$(k = 1, 2, \dots, 2g + 1)$$
 by

$$\eta'_{2i-1} = \left(0, \cdots, 0, \frac{\dot{1}}{2}, 0, \cdots, 0\right),$$

$$\eta''_{2i-1} = \left(\frac{1}{2}, \dots, \frac{1}{2}, \overset{i}{0}, 0, \dots, 0\right),$$

$$(\eta'_{2g+1} = (0, 0, \cdots, 0))$$
 and

$$\eta'_{2i} = \left(0, \cdots, 0, \frac{\overset{t}{1}}{2}, 0, \cdots, 0\right),$$

$$\eta_{2i}'' = \left(\frac{1}{2}, \cdots, \frac{1}{2}, \frac{\dot{1}}{2}, 0, \cdots, 0\right).$$

For any subset T of B, put

$$\eta_T = (\eta_T', \, \eta_T'') = \sum_{k \in T} \eta_k \in \frac{1}{2} \mathbf{Z}^{2g},$$

 $(\eta_{\emptyset} = (0, 0, \cdots, 0))$. For any subsets S, T of B, let us denote by $S \circ T$ the symmetric difference of S, T; $S \circ T = S \cup T - S \cap T$. For the sake of the notational simplicity, let us denote by

$$\vartheta[T] = \vartheta[\eta_T](\Omega, 0)$$

the theta zero value at the period Ω with a theta characteristic η_T for any subset T of B.

Now our main result is

Theorem 1.1. For any disjoint decomposition $B = V \bigsqcup W \bigsqcup \{k, l, m\}$ with #V = #W = g - 1, we have

$$\frac{a_k - a_l}{a_k - a_m} = \varepsilon(k; l, m) \times$$

$$\Big(\frac{\vartheta[U\circ (V\cup \{k,\ l\})]\cdot \vartheta[U\circ (W\cup \{k,\ l\})]}{\vartheta[U\circ (V\cup \{k,\ m\})]\cdot \vartheta[U\circ (W\cup \{k,\ m\})]}\Big)^2.$$

Here

$$\varepsilon(k; l, m) = \begin{cases} 1 & \text{if } k < l, m \text{ or } l, m < k \\ -1 & \text{if } l < k < m \text{ or } m < k < l. \end{cases}$$

The proof of Theorem 1.1 will be given in the next section.