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Introduction. Let C be a compact Riemann
surface of genus 2. Then C has six Wierstrass
points. If we normalize three of them into 0, 1
and oo, the complex curve C is defined by
Y X(X 1) (X 2) (X 2) (X 2).

Rosenhain’s normal form gives /1, 2. and 2a as
ratios of theta constants at the period matrix of
C (see Remark 1.3).

In this paper, we will give a similar formula
for the hyperelliptic curves over C of general
genus (Theorem 1.1). As an application of the
formula, we will give resolutions of a complex
algebraic equation as ratios of theta constants at
the period matrix of a suitable hyperelliptic
curve (Theorem 3.1).

Such formulas were given by H.Umemura in

[1] based on Thomae’s formula. But adding to
Thomae’s formula, we have Frobenius’ theta for-
mula [1, Theorem 7.1] and a criterion of
vanishing of theta constant at the period matrix
of the hyperelliptic curve [1, Corollary 6.7]. Us-
ing these results, we can simplify the formula
given by Umemura.

1 Main result. Let f(X) be a separable
monic polynomial with complex coefficients of de-
gree 2g + 1. Let al, a2," ", a2g+l be the roots of
f(X) 0. Let pg be the period matrix of
the hyperelliptic curve Y--f(X). Here gg de-
notes the Siegel upper half space of genus g. The
ordering of the roots of f(X) 0 determines the
classical basis of the first cohomology group of
the hyperelliptic curve. The basis in turn defines
the period matrix . A theta function is defined
by

0[M (, w)

exp2zc/-- 1
Zg

where w Ce and a (or’, or") Re are row
vectors with or’, c" Re, and (x, y) x" y.

Put
B {1, 2, 3,’", 2g + 1},
U= {1,3, 5,’", 2g+ 1}.

1
Define theta characteristics Tk- (, 7) -(k 1,2,..., 2g + 1) by_

-if, 0,’", 0

(2g+l
712-I 2’
(0, 0,"’, 0)) and

,o,-,o,...,o,
li ),2,2,0,"’,0.

For .any subset T of B, put

=(,’)= Z
kT

1 2g- Z(r/o (0, 0,’", 0)). For any subsets S, T of B,
let us denote by S T the symmetric difference
of S, T S T= S U T-- S N T. For the sake
of the notational simplicity, let us denote by

0[T] O[r/r] (D, 0)
the theta zero value at the period Y2 with a theta
characteristic Tr for any subset T of B.

Now our main result is
Theorem 1.1. For any disjoint decomposition

B V[__JW[__J{k,l, rn} with #V #W=g -1,
we have

ak a
=s(k;l,m) x

ak am

0[,., V U {k, m))] O[U (W U {k, m})]

s(k’l m) / 1 if k< l, rnor 1, m<k
--1 ifl<k<rnorrn<k<l.

The proof of Theorem 1.1 will be given in
the next section.


