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In this paper we show some results on the
relation between the first derivatives of the
Rankin’s L-series of certain modular forms at
s 1 and the heights for certain divisors on the

Jacobian of the modular curve X0(N). These di-
visors consist of Heegner points whose orders
have conductor f. The proof of our main result
consists of a long complicated "analytic" computa-
tion (see [5]}. This generalizes the "analytic" part
of the influential work of Gross and Zagier [4],
which has established a relation between the first
derivatives of the Rankin’s L-series of certain
modular forms at s 1 and the height pairings
for squarefree discriminants prime to N. Their
results can be applied to give the proof of a spe-
cial case of the Birch-Swinnerton-Dyer conjec-
ture, and are needed to complete Goldfeld’s solu-
tion of Gauss conjecture for the class number of
imaginary quadratic fields. Kolyvagin [6] has
used the result of [4] in his proof of the finite-
ness of the Tate-Shafarevich groups of certain

modular elliptic curves over Q. J. van der Lingen

[7] has calculated "algebraically" the local N6ron-
Tate height pairings "at non-archimedean places"
for certain divisor on X0(N) consisting of Heeg-
ner points whose orders have general discrimi-
nants prime to .iV. He has found explicit formulas
for these local height pairings at non-
archimedian places. But it is difficult to compare
his formulas and ours.
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1. Let us begin with recalling some defini-
tions. Let K be an imaginary quadratic field with
the fundamental discriminant Do, and g an order
with the diseriminant D Dof of the conductor

f in K. Let h # Pic() and u-- # (g/{----- 1}).
We have u 1 unless D 3, 4, in which
cases u 3, 2, respectively.

We say :r-- (E-- E’)is a "Heegner point"
of discriminant D on X0(N) if both of the elliptic
curves E and E’ have complex multiplication by. Such a point exists if and only if D is con-
gruent to a square modulo 4N" equivalently ev-
ery prime divisor of N splits or is ramified in K.
If one Heegner point exists on Xo(N), then there

2are "hz Heegner points with s # {pIN}
which are all rational over the "ring class field"

Kz- K(j(E)) of K. Those Heegner points are
attached to a fixed integral ideal n(N(n) N) of

with /n Z/NZ. They are permuted
simply-transitively by the abelian group W x
Gal(Kz/K) and those actions on Heegner points
can be described explicitly, where W - (Z/2)
is the group of Atkin-Lehner involutions and

GaI(Kz/K) the Galois group of Kz/K, which is

canonically isomorphic to the class group Pic(t)
of via the Artin reciprocity map (see [1]).

In this paper, D is not assumed to be square
free nor relatively prime to .IV on Xo(N), but
assume throughout that the conductor f is re-

latively prime to N. Fix a Heegner point :r of dis-
criminant D" then the class of the divisor c--
(:r)- (co)defines an element in J(K), where
(co) denotes the sum of cusps at infinity on

X0(N), which is defined over Q, where J is the
Jacobian of Xo(N).

Let f(z) ,n2 a(n) e2inz be an element in

the vector space of newforms of weight 2 on

Fo(N), (.)= (D)the Kronecker Symbol and

r(n) the number of integral invertible ideals of
of norm n in the class M. We define the Rank-

in’s L-function associated to the newform f(z)
and the ideal class M by

Lc(f, s) L) (2s 2/c + 1, e)"
--$

a(n)rc(n)n
where

-2s+2k-1L()(2s-2k+ 1, ) e(n)n
(n,DN) =1

The series L) is the Dirichlet L-function of at


