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1. Let be an upper half plane ,F:
SL2(Z) and F= be the stabilizer of the cusp io
of F. The real analytic Eisenstein series
E(z, c) is defined by

E(z,a) (Imz)forRea> 1.

We put E*(z, a) (2a)E(z,
-szF(s/2)(s) and (s) is the Riemann zeta
function. It is well known that the function E*(z,
) has a holomorphic continuation to all a except
for simple poles at a 0 and 1 and satisfies the
functional equation E*(z,
The Fourier expansion is given by

E*(z, a) (2a) + (2

Here, Kv(z) denotes the so-called modified Bessel
function and av(n) aln

In [5], Vinogradov and Takhtadzhyan stu-
died the classical additive divisor problem
through the spectral theory of automorphic func-
tions. Namely they showed that the main term of
the integral

1 2ySe2,kdxdyE*(z 1/2)
Y

is -F(s/2)4F(s)- X:= d(n)d(n + k)n- and
got the growth order of the last Dirichlet series
by the spectral theory of automorphic functions.

2. We consider here the product of the
Eisenstein series and a cusp form and derive the
corresponding Dirichlet series. Let f(z)be a
Maass wave form with the parity e] and its
Fourier expansion be given by

1/2K 2gix

f(z) X p(n)y __,(2 n y)e

We assume that p(n) O([ n [,o) for some

o > 0. Up to now, it is known that Uo g 5/28.

(cf. [l)
For a natural integer k, we define

I (s a, f) E* (z, a) f(z)y e
Y

Lemma 1. Let s be a complex number. If Re s

is sufficiently large, we have

rcSF(s) )-iF{ + a 1/2 + ix )(s. f) (4 2

F( 2 itc)F(S--C+21/2+ ix)

-1 m
s+"-/ 2

+ s+-l/2
=l,ek

F/s+- 1/2 + i s + -- 1/2 i
2 2 ;s;

+so(k)o(s ;),
where F(, , r z) is the hypergeometric function
and

Po (s, )
4(k)s+-/

4(k)s_+/
F 2

2 ]
This lemma can be shown by the Fourier ex-

pansions of E*(z, c), f(z) and the following in-
tegral formula:

K(ny)Ku (my) dy 2S-m--nF(s)

F( s-p-2 )
x F(,s++p2

s+u--p )2 ;s;1-- (n/m)

(cf. [21 p. 93 (36))


